YEAR 3 PHYSICAL FORMULA BOOKLET 3C21: PHYSICAL CHEMISTRY II

YEAR 3 PHYSICAL
FORMULA BOOKLET*

*Not all formulas may be covered, or even correct. Use at your own risk. We
will not be liable for any stupid mistakes made in real life or in the exam. Like a
factor of 10 in one of your electrochemical reactions could blow your lab up.
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The weight of a molecular configuration (the number of complexions)
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Boltzmann probability distribution (also fractional population) in a general form including degeneracy of
states:
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Definitions for molecular (q) and canonical (Q) partition functions and their importance in Statistical
Thermodynamics. (€i— molecular energy; Ei — system (ensemble) energy). Be able to appreciate the
difference between them. Be able to calculate them for simple models.
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Appreciate the difference between canonical partition functions for distinguishable and indistinguishable
particles:

Q=g" distinguishable particles
Q=qg"/N! indistinguishable particles

(Remember that indistinguishability is accounted only once! (in Qtrans = qVtrans / N!)

Understand the relation between thermodynamic functions and partition functions and how the former can
be calculated from partition functions:

Total energy: U = kT? (B;LTQ)
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Free energy: A = —kTInQ

Entropy: S =klnQ + kT (aan)
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Be able to calculate their values for simple models.




The Boltzmann equation for entropy and its origin. Residual entropy

S = kinQ

Separation of partition functions for independent particles:
Eiptar = &1+ &+ &y
Qtotar = 0192 - qn = q"
Separation of partition functions for independent degrees of freedom of a particle:
Etotal = Etrans 1 Erot T Epip T Eerec +

Qtotal = Qtrans9rotQuibGelec -

Appreciating the use of partition functions for finite (short polymer conformations, spin states, etc.) and
infinite (long polymer configurations, vibrational and rotational states, etc.) discrete molecular states.

Appreciate the differences in associated heat capacities (Cv);

Be able to explain the behavior of Cy at the high- and low-T limits in each case.

Expression for translation partition function:
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Expressions for vibrational partition function for a single vibration, characteristic vibrational temperature and
associated fractional population:
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Remember that a total vibrational function is a product of partition functions of individual vibrations of a
molecule

Qvib = Quib1Qvib2 -+ QvibM

M is either =3N-6 or =3N-5 (linear), N - total number of atoms in the molecule

High temperature approximation for qui:
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Qvib = ®_v

Expressions for rotational partition function, characteristic rotational temperature and associated fractional
population:
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The origin and the use of the symmetry number (o)

Appreciate that electronic partition function is normally simply the ground state degeneracy:

de = 9o

Application of the classical equipartition of energy. Its use in the estimation of the heat capacities in the high-
T limit.
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Appreciate the algorithm for the calculation of the equilibrium constants for simple chemical reactions using
partition functions of the reactants/products. See how different contributions can influence the equilibrium

constant.
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for a gas type reaction : aA+ bB - cC+ dD

Remember that g, = 13—" in Keq
A

Be familiar with the properties of the elementary Math functions (such as exp(x), In(x), etc. Be able to use the
rules for differentiation of elementary Math functions (incl. the chain rule).
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The chain rule: For a function of u(v(x)) : % 20 ox




Beer Lambert:
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Oscillator Strengths
Oscillator strength, f, is related to fundamental molecular properties.
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piris the (electric dipole) transition moment. It determines the effectiveness of a transition. The larger the
magnitude, the stronger the transition and greater the magnitude of €. If pif= 0 then the transition should not
occur at all (forbidden)

Transition Moments:

Rate at which photons absorbed I' = |yif|21(vif)
I(vif) is the intensity of light at the frequency corresponding to energy difference i and f.

Bras, kets and operators:
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Hir = (1/Ji|#|1l’f>

Approximations and Selection Rules

e Only one electron excited during excitation
e  Born-Oppenhiemer to separate out nuclear interactions
e Electronic wavefunctions products of orbital and spin wavefunctions

Hif = (1/Ji|#|1l’f) =X |Xf>(¢i|ll|¢f)<5i|5f)
Nuclear Overlap Selection Rule
|(Xi|)(f)|2 0
Spin Selection Rule

AS=0




Symmetry Selection Rule

Transitions can only occur if there is a change in parity
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Fluorescence Lifetimes

kris only related to fluorescence, but can also undergo Internal Conversion and Inter System Crossing
Quantum Yield for Fluorescence

_ fluorescent photons emitted (s™*m™) ky
;=

photons absorbed (s~1m=3) ks
Quantum Yield for Phosphorescence
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Quenching and the Stern — Volmer
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Experimental Techniques
Comparing fluorescent yields from a sample to a reference sample
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General Nernst Equation
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Gibbs Free Energy
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Faradaic Current
i,x = nAFj

i
V= FA

j= kO[X]s
[X]s = Surface concentration of ion of interest at electrode

Butler-Volmer Equation (You need to know how to derive — it’s really long)
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If mass transport is fast then it reduces to
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Diffusion

Fick’s First Law

Fick’s Second Law

Current

Stoke-Einstein Equation

Convection

Migration

Uy : lonic mobility of X

Cottrell Equation

Randell Sevcik Equation

Reversible Limit

Irreversible Limit

a: charge transfer coefficient
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Diagnostic Criteria:

Reversible Limit

Irrversible Limit

Irrversible Limit

wheref =1—«

EC Reaction

EC’ Reaction

Microelectrodes

Fick’s Second Law

Cottrell Equation

Spherical Electrode

|E, — Ex| = 2.218%C
2 F

|E, — E1| = 1.857% Reduction
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How far do atoms move during a vibration?

Absorption of Light

Fermi’s Rule

Beer Lambert

Chiral Molecules

Dissymmetry Factor

Optical Polarization
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Forster Theory

Two Photon Absorption

Doppler-Free Spectroscopy

Higher Order Processes
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AE = hvy + hvl = 2hv

AE = mhv

Intensity depends on I™  where |l isirradiance




X-ray diffraction

Distances between planes

Glancing angles

sin’6

Bragg Equation

Laue Equation
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Intensities

f= 27Tfp(1")5i:%1'2d1"

Structure Factor
Fr = Zfl.eifl’hkl(j)

Fourier Synthesis

Phase Problem
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Structure Refinement

R factor
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