Transition Metal Catalysis – Catalytic Cycles

Торіс	Cycle	Catalyst	Notes
Addition to Alkene	Hydrogenation $H_2C=CH_2 + H_2 \rightarrow H_3C-CH_3$	RhCl(PPh ₃) Wilkinson's Catalyst	 Phosphine ligands best Fast turnover (bulky group – dissociation, good donor – oxidative addition)
	Hydrosilation H ₂ C=CH ₂ + HSiR ₃ \rightarrow H ₃ C-CH ₂ SiR ₃	H ₂ PtCl ₆	 Catalysed by whole range of catalysts HSiR₃ – super proton Forms linear products
	Hydrocyanation H ₂ C=CH ₂ + HCN → H ₃ C-CH ₂ CN	Ni(P[O(o-tolyl)]₃	 Strong donor phosphine's do not give turnover Isomerise internal alkenes to give terminal products Hydrocyanation of butadiene to give <i>adiponitrile</i>
	Hydroformylation H ₂ C=CH ₂ + CO + H ₂ → H ₃ C-CH ₂ CHO	HCo(CO) ₄ / HRh(PPh ₃) ₂ (CO)	 Co: Harsh conditions, moderate selectivity, competitive hydrogenation Rh: Mild conditions, excess phosphine needed for high selectivity
Carbonylation	Reppe / BASF	Cobalt-based	
	Monsanto сн₃он + со –(ні)→ сн₃соон	[RhI ₂ CO ₂] ⁻ Rhodium-based	
	BP Cativa	Iridium-based	 Better than Rh at forming alkyl bond Promoted by species such as [Ru(CO)₃I₂]₂
Ö	Polyketone Formation	[PdL ₂ (OR)] ⁺	 Addition of alkene and CO to give polyketone

Coupling Reactions	Grignard _{RMgX}	Ni(acac) ₂ / (dppe)NiCl ₂ / FeCl ₃ / CoCl ₂ / CrCl ₂	
	Negishi _{RZnX}	(Ph ₃ P) ₄ Ni / (Ph ₃ P) ₂ PdCl ₂	
	Stille RSnR'₃	Pd(dba)₃	 Make sure you have no beta-hydrogens Me₃Sn best choice for control but ^tBu₃Sn much safer Tin compounds toxic Aided by bulky ligands and highly basic additives (CsF)
	Sonogashira _{Cu-C≡C-R}	(MeCN) ₂ PdCl ₂	Base required to remove HX liberated
	Mizoroki-Heck H₂C=CHR	PdL _n Pd(0) or Pd(II)	 Coupling of an aryl halide with an alkene
Carbenes	Fisher	M=CH ₂ X X = Heteroatom	 Metal in low oxidation state Back-bonding present Oxidation state (-2)
	Schrock	M=CH ₂ R R = Hydrogen or Carbon <i>Alkylidene</i>	 Metal in high oxidation state Back-bonding present Oxidation state (-2)
	Nucleophillic	R ₂ C: Free carbene	 Introduced using lone pair (like phosphines) Stabilised by heteroatom substituents ie Nitrogen <u>No</u> Back-bonding present Neutral so oxidation state (0)

Metathesis	Schrock's Grubb's	Mo(=CHCMe ₂ Ph)(=NAr)(-OR) ₂ RuCl ₂ (PCy ₃) ₂ (=CHPh)	 Highly active React with hindered alkenes Control reactivity by altering alkoxide groups Poor functional group tolerance Undergo the Chauvin
		RuCl ₂ (PCy ₃)(:C(NR ₂) ₂)(=CHPh) RuCl ₂ (NR ₂) ₂ (:C(NR ₂) ₂)(=CHPh)	mechanism
Alkene Polymerisation	Ziegler	TiCl4	 Activated by AlEt₃ Mild conditions Controlled process – yields isotatic, high density Undergoes Cossee-Arlman Mechanism
	Metallocene	MCl ₂ (Cp) ₂ Co-catalyst: AlClR ₂	Weak co-catalyst to pull off Cl
		MCl ₂ (Cp) ₂ Co-catalyst: MAO	 Strong co-catalyst to pull off Cl Scavenges water
		MR ₂ (Cp) ₂ Co-catalyst: [CPh ₃][B(C ₆ F ₅) ₄]	 Triphenylcarbenum (Trityl) salts [Ph₃C]⁺ powerfull alkyl abstractor