
Physical Chemistry 

Quantum tunnelling 

Quantum tunnelling uses quantum principles to explain a property of molecules at the quantum 

level.  

Principles of quantum tunnelling 

Quantum tunnelling can be used to explain the act of quantum species travelling from one side of a 

material to the other. It seems to break classical physics perception. If a molecule has enough energy 

to pass through or over a barrier in classical physics it will do so with 100% success if it doesn’t then 

it will fail 100% of the time. Both of these assumptions are wrong in quantum mechanics. 

The act of quantum tunnelling is an extremely important effect in chemical kinetics and it can be 

used to explain many different functions and functions of systems. 

 

Understanding tunnelling  

A simple tunnelling problem can be explained with 3 regions in one dimension 

 

This shows 3 regions I, II and III. Here the region II is filled with a potential barrier. This has a length L 

and a potential V. Both I and III have zero potentials. 

Schrödinger’s equation shows that: 
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The wavefunction at each point can be represented by the following: 

𝛹 = 𝑐1𝑒𝑖𝑘𝑥 + 𝑐2𝑒−𝑖𝑘𝑥 



So do these separate terms have a significance? This can be looked at by setting one of the terms to 

equal one. When this is done the following equations are obtained. 

𝑐1 = 0 

   𝛹 = 𝑐2𝑒−𝑖𝑘𝑥     

The momentum of a particle can be found by using the following operator on the wavefunction 

equation: 
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𝑐2𝑒−𝑖𝑘𝑥 = 𝑝𝑥𝑐2𝑒−𝑖𝑘𝑥 

𝑝𝑥 = −ħ𝑘 

𝑤ℎ𝑒𝑛 𝑐2 = 0   𝑝𝑥 = ħ𝑘 

This shows that 𝑐1 = 0 the particle is moving in the positive x direction and when 𝑐2 = 0 the particle 

is moving in the negative x direction. 

This can be applied to each section of the barrier: 

 

Region I 

This means that in region I it is simply the free particle solution to Schrodinger’s equation.  
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The general solution to this equation is: 

𝛹 = 𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥 

This shows how the particle can move both forwards and backwards through the space, and as there 

is no potential it can be represented as the wavefunction above.  

Region 2 
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+ (𝑉 − 𝐸)𝛹𝐼𝐼 = 0 

The point to be made here is when classical transition is forbidden. When E<V the solution to the 

equation is purely real. The absence of i means that there is no oscillation occurring in the wave. This 

means that a purely exponential decay forms from this point. This is now due to k becoming real due 

to the finite V that can be given: 

𝛹𝐼𝐼 = 𝐶𝑒𝑘𝐼𝐼𝑥 + 𝐷𝑒−𝑘𝐼𝐼𝑥 
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This shows how the particle can still move in both directions although there is oscillation of the 

particle.  

Region 3 

Now it has to be assumed that if the particle travels through the barrier it can only be travelling in 

one direction which means its wavefunction becomes: 

𝛹𝐼𝐼𝐼 = 𝐸𝑒𝑖𝑘𝐼𝑥 

This is not true anywhere else as reflected particles may be present.  

This means that the three regions have very different properties compared to the one before it. 

These can be easily represented in this diagram: 

 

 

From earlier notes we know that the wavefunction must be continuous. This includes moving from 

one area of potential to another. This means that no sudden kinks must be present at the 

boundaries. As the basis of each wavefunction is the same the constants must change. So: 

𝑖𝑘𝐼𝐴 − 𝑖𝑘𝐼𝐵 = 𝑘𝐼𝐼𝐶 − 𝑘𝐼𝐼𝐷     𝑎𝑡 𝑥 = 𝐿 

𝐶𝑘𝐼𝐼𝑒𝑘𝐼𝐼𝐿 − 𝐷𝑘𝐼𝐼𝑒𝑘𝐼𝐼𝐿 = 𝐸𝑖𝑘𝐼𝑒−𝑖𝑘𝐼𝐿 

This gives us a proper form of the wavefunction and the values of 𝑘𝐼𝐼 this allows the equation to be 

solved for transmission:  

𝑇 =
𝐴2

𝐸2
 

This is produced due to the relationships between the movement in the positive x direction and the 

ability for this to pass through the barrier into the final area. This can form the final equation: 
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