
Physical Chemistry  

Quantum harmonic and anharmonic oscillator 

The idea of harmonic oscillation is not a purely quantum experiment. It is well known that all 

classical particles expierence some form of harmonic motion. Which needs to be described and 

understood first before quantum harmonic oscillation can be understood. The main use of quantum 

harmonic oscillation is to describe and explain why spectroscopic methods produce reasonably 

discreet peaks rather than a large Gaussian shift. 

Classical treatment of a vibrating molecule 

When a molecule undergoes simple harmonic motion the force needed to separate the molecule is 

negatively proportional to the force that is pulling it back in. The force is dependant on a constant of 

the bond that is k and x is the extension. 

𝐹 = −𝑘𝑥 

It is also known that the potential energy is represented by the equation: 
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The potential energy is 0 when the displacement is 0 meaning that the kinetic energy and therefore 

the speed is at a maximum at this point. 

When a molecule is vibrating its mass is centred on a fixed point this gives it an adjusted mass of μ. 
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When this is applied to Newton’s second law of motion the vibration leads to the equation of: 
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This means that the force is dependant on the displacement over time. Which can be mapped by a 

graph with the equation: 
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The fundamental frequency of the vibration can be given as one over the period or represented as: 
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It is also noted that the change in energy of a particle undergoing simple harmonix ossilation can be 

given as: 

𝐸 = ℎ𝜔0 =
ℎ

2𝜋
√

𝑘

𝜇
 

 



 

Quantum mechanical treatment of a vibrating diatomic molecule 

Now we can apply some of these principles to the quantum mehcnical principles shown below. The 

following equation relates the eigenvalue for energy and the observable for energy being the total 

energy minus the potential energy. 
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This means that the shcrodinger equation can be represented as: 
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This can be converted (using calculus) to: 
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This seems very complicated and it is, Here 𝐻𝜈 represents a number of different polynomials. The 

first three are worth remembering: 

𝑣 = 0      𝐻1 = 1 

𝜈 = 1     𝐻2 = 2𝑦 

𝜈 = 2    𝐻3 = 4𝑦2 − 2 

To normalise the wavefunction is harder in these cases as the constant depends on the energy level 

that the molecule is at. This means that the normalisation constant can only be given as: 
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The frequency of the oscillator can be given as the zero point energy of the oscillator in the following 

equation 

𝐸0 =
1

2
ℎ𝜔0 

Obviously this doesn’t explain the oscillation at different energies which can be explained by the 

following equations: 
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This means that the energy of the simple harmonic osciallator is always separated by the same 

energy gap. Which is h𝜔0. 

 

Tunnelling in quantum harmonic motion 



As the energy levels for the quantum harmonic oscillator are sloped and are not at an infinite 

potential it is possible for the molecule to tunnel outside of the oscillator. This means that it is 

possible for the particle to have a negative kinetic energy. 

 

  


