Mini Mock Exam

CHE-2C2Y COURSE TEST 2

Name: \qquad

There are five little random questions in this booklet from the entire course.

Read through the question carefully and answer in full.
No cheating!

Question	Maximum Mark (\%)	Your Mark (\%)
1	20	
2	20	
3	20	
4	20	
5	20	
	Total Percentage	

Question 1

Thermodynamics I

1. Calculate $\Delta \mathrm{S}, \Delta \mathrm{S}_{\text {surr }}$ and $\Delta \mathrm{S}_{\text {tot }}$ for:
(a) the isothermal, reversible expansion
(b) the isothermal, free expansion
of one mole of ideal gas molecules from 8.00 L to 20.00 L and 292 K . Explain any differences between the two paths.

Model Answer

(a) $\Delta S=n R \ln \left(\frac{V_{2}}{V_{1}}\right)$
(4\%)
$\Delta S=1 \times 8.314 \times \ln \left(\frac{8.00}{20.00}\right)=+7.618 \mathrm{~J} \mathrm{~K}^{-1}$
$\Delta S_{\text {surr }}=-7.618 \mathrm{~J} \mathrm{~K}^{-1}$
and
$\Delta S_{\text {tot }}=0 \mathrm{~J} \mathrm{~K}^{-1}$ (4\%)
(b) $\Delta S=+7.618 \mathrm{~J} \mathrm{~K}^{-1}$
and

$$
\Delta S_{\text {surr }}=0 \mathrm{~J} \mathrm{~K}^{-1}
$$

and

$$
\Delta S_{\mathrm{tot}}=+7.618 \mathrm{~J} \mathrm{~K}^{-1} \mathbf{(3 \%)}
$$

Entropy is a state function so the change in entropy of the system is the same in all cases. For (a) $\Delta \mathrm{U}=0$ so $\mathrm{q}=-\mathrm{w}$. The heat that flows out of the system flows into the surroundings. For (b), in a free expansion, no work is done. In which case w $=0$. As $\Delta U=0$ no heat is transferred to the surroundings. (5\%)

Question 2

Thermodynamics 2

2. a. Draw a pressure - temperature phase diagram for a single component mixture ensuring that you show any phase boundaries and label the triple point, critical point, and region of supercritical fluid.
[10\%]
b. At 276 K the osmotic pressure of a protein solution is $172 \mathrm{~N} \mathrm{~m}^{-2}$. The concentration is 1 g in $200 \mathrm{~cm}^{3}$ of solution. Assuming ideal behaviour calculate:
i. the concentration of the protein in $\mathrm{mol} \mathrm{m}^{-3}$
ii. the molar mass of the protein in $\mathrm{g} \mathrm{mol}^{-1}$

Model Answer

(a) See diagram on next page for reference

Label axis correctly, and drawing lines in correct places and placing solid, liquid and gas ($\mathrm{S}, \mathrm{L}, \mathrm{G}$) in the correct places (4\%)
Labelling phase boundaries correctly:
Solid/Liquid: Melting/Fusion \& Freezing (1\%)
Liquid/Gas: Vaporisation \& Condensation (1\%)
Gas/Solid: Sublimation/Desublimation (1\%)
Labelling of the significant points on the diagram:
Triple Point (1\%)
Critical Point (1\%)
Supercritical Fluid (1\%)

(b)
(i) $\pi=R T c_{\text {solute }}$
therefore
$c_{\text {solute }}=\frac{\pi}{R T}$
(3\%)

$$
c_{\text {solute }}=\frac{\pi}{R T}=\frac{172}{8.314 \times 276}=0.075 \mathrm{~mol} \mathrm{~m}^{-3}
$$

(ii) $\quad c_{\text {solute }}=\frac{\text { mass }_{\text {sucrose }}}{M M_{\text {sucrose }} \text { volume } \text { solution }}$

Therefore $M M_{\text {sucrose }}=\frac{\text { mass }_{\text {sucrose }}}{c_{\text {sucrose }} \text { x volume }}$ solution $=$
$\frac{1}{200 \times 10^{-6} \times 0.075}=66.7 \times 10^{3} \mathrm{~g} \mathrm{~mol}^{-1}$
(2\%)

Question 3

Complex Kinetics

3. The following Rice-Herzfeld mechanism is shown:
$\mathrm{CH}_{3} \mathrm{CHO} \rightarrow \mathrm{CH}_{3}{ }^{\bullet}+\mathrm{CHO}^{\bullet}$
$\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{CH}_{3}^{\bullet} \rightarrow \mathrm{CH}_{3} \mathrm{CO}^{\bullet}+\mathrm{CH}_{4}$
$\mathrm{CH}_{3} \mathrm{CO}^{\bullet} \rightarrow \mathrm{CH}_{3}{ }^{\bullet}+\mathrm{CO}$
$2 \mathrm{CH}_{3}{ }^{\bullet} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$
a. Label which reaction steps are Initiation, Propagation and Termination steps by placing I, P or T respectively in the boxes.
[5\%]
b. Apply a suitable approximation to show that the rate of formation of methane can be expressed as:

$$
\frac{d\left[\mathrm{CH}_{4}\right]}{d t}=k_{2} \sqrt{\frac{k_{1}}{2 k_{4}}}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{3 / 2}
$$

[15\%]

Model Answer

(a) k_{1} : Initiation
$\mathrm{k}_{2} \& \mathrm{k}_{3}$: Propagation
k_{4} : Termination (5\%)
(b)
$\frac{d\left[\mathrm{CH}_{4}\right]}{d t}=k_{2}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]\left[\mathrm{CH}_{3}^{-}\right] \quad$ (2\%)
$\mathrm{CH}_{3}{ }^{\circ}, \mathrm{CHO}^{\bullet}$ and $\mathrm{CH}_{3} \mathrm{CO}^{\bullet}$ are intermediates
Apply SSA to rate equation of $\mathrm{CH}_{3}{ }^{-}$

$$
\begin{aligned}
\frac{d\left[\mathrm{CH}_{3}^{\cdot}\right]}{d t}= & k_{1}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]-k_{2}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]\left[\mathrm{CH}_{3}^{\cdot}\right]+k_{3}\left[\mathrm{CH}_{3} \mathrm{CO}\right]-2 k_{4}\left[\mathrm{CH}_{3}^{\prime}\right]^{2} \\
& =0
\end{aligned}
$$

Apply SSA to rate equation of $\mathrm{CH}_{3} \mathbf{C O}^{\bullet}$

(3\%)

$$
\frac{d\left[\mathrm{CH}_{3} \mathrm{CO}^{\cdot}\right]}{d t}=k_{2}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]\left[\mathrm{CH}_{3}^{\cdot}\right]-k_{3}\left[\mathrm{CH}_{3} \mathrm{CO}\right]=0
$$

As the two are equal to zero they can be placed equal to one another: (2\%)

$$
\begin{gathered}
k_{1}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]-k_{2}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]\left[\mathrm{CH}_{3}^{-}\right]+k_{3}\left[\mathrm{CH}_{3} \mathrm{CO}^{\cdot}\right]-2 k_{4}\left[\mathrm{CH}_{3}^{-}\right]^{2} \\
=k_{2}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]\left[\mathrm{CH}_{3}^{-}\right]-k_{3}\left[\mathrm{CH}_{3} \mathrm{CO}\right]
\end{gathered}
$$

This cancels to give: (2\%)

$$
k_{1}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]-2 k_{4}\left[\mathrm{CH}_{3}^{*}\right]^{2}=0
$$

And rearranged to give: (2\%)

$$
\left[\mathrm{CH}_{3}^{\cdot}\right]=\sqrt{\frac{k_{1}}{2 k_{4}}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]}
$$

Inserted into the original equation to give the final answer:
(1\%)

$$
\frac{d\left[\mathrm{CH}_{4}\right]}{d t}=k_{2} \sqrt{\frac{k_{1}}{2 k_{4}}}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{3 / 2}
$$

Question 4

Theories of Chemical Reactions

4. a. In a temperature jump the relaxation time, τ, is measured. Show that for the reaction

$$
\mathrm{A}+\mathrm{B} \underset{k_{-1}}{\stackrel{k_{1}}{\leftrightarrows}} \mathrm{C}+\mathrm{D}
$$

the relaxation time is given by

$$
\frac{1}{\tau}=\left\{k_{1}([\bar{A}]+[\bar{B}])+k_{-1}([\bar{C}]+[\bar{D}])\right\}
$$

b. For an ion combination reaction, $A^{+}+B^{-} \rightarrow A B$, calculate $d_{\text {eff }}$ with a dielectric constant of 80 .

$$
\begin{aligned}
& d_{A B}=4 \times 10^{-10} \mathrm{~m}, e=1.6 \times 10^{-19} \mathrm{C}, \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}, \\
& k_{B}=1.38 \times 10^{-23} \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, T=300 \mathrm{~K}
\end{aligned}
$$

Model Answer

(a)
$-\frac{d[A]}{d t}=k_{1}[A][B]-k_{-1}[C][D]$
$-\frac{d[\bar{A}]}{d t}=k_{1}[\bar{A}][\bar{B}]-k_{-1}[\bar{C}][\bar{D}]$
$-\frac{d([\bar{A}]+\Delta x)}{d t}=k_{1}\left(([\bar{A}]+\Delta x)([\bar{B}]+\Delta x)-k_{-1}(([\bar{C}]-\Delta x)([\bar{D}]-\Delta x)\right.$
(2\%)
$-\frac{d[A]}{d t}+\frac{\Delta x}{d t}=k_{1}\left\{[\bar{A}][\bar{B}]+\Delta x[\bar{A}]+\Delta x[\bar{B}]+\Delta x^{2}\right\}-k_{-1}\{[\bar{C}][\bar{D}]-$ $\left.\Delta x[\bar{C}]-\Delta x[\bar{D}]+\Delta x^{2}\right\}$ (2\%)

Any term that does not contain Δx or contains Δx^{2} is eliminated
$\frac{\Delta x}{d t}=k_{1}\{\Delta x[\bar{A}]+\Delta x[\bar{B}]\}-k_{-1}\{-\Delta x[\bar{C}]-\Delta x[\bar{D}]\}$ (2\%)
This is rearranged:
(1\%)

$$
\frac{\Delta x}{d t}=\Delta \mathrm{x}\left\{\left\{k_{1}([\bar{A}]+[\bar{B}])+k_{-1}([\bar{C}]+[\bar{D}])\right\}\right\}
$$

And therefore the time constant is given as: (1\%)

$$
\frac{1}{\tau}=\left\{k_{1}([\bar{A}]+[\bar{B}])+k_{-1}([\bar{C}]+[\bar{D}])\right\}
$$

(b)
$\delta=\frac{Z_{A} Z_{B} e^{2}}{4 \pi \varepsilon_{0} \varepsilon_{r} d_{A B} k_{B} T}$
$=\frac{+1 \times-1 \times 1.6 \times 10^{19^{2}}}{4 \pi \times 8.85 \times 10^{-12} \times 80 \times 4 \times 10^{-10} \times 1.38 \times 10^{-23} \times 300}=1.738$
$d_{e f f}=d_{A B}\left(\frac{\delta}{e^{\delta-1}}\right)$
(3\%)
$4 \times 10^{-10}\left(\frac{1.738}{e^{1.738}-1}\right)=1.484 \times 10^{-10} \mathrm{~m}$
(3\%)

Question 5

Surface Chemistry

5. a. When contained in the cylindrical pores of a porous material the vapour pressure of CO_{2} drops from the normal vapour pressure at 25 ${ }^{\circ} \mathrm{C}$ of 64.0 bar to a lower value of 62.0 bar. Estimate the pore size of the porous material.

Take the molar volume of CO_{2} at $25^{\circ} \mathrm{C}$ to be $61.6 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ and the surface tension to be $1.16 \mathrm{mN} \mathrm{m}^{-1}, \mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.
b. The chemisorption of a gas is described by the Languir isotherm with $\mathrm{K}=8.5 \times 10^{-4} \mathrm{~Pa}^{-1}$. What gas pressure would be required to obtain a surface coverage of 0.5 ?

Model Answer

(a)
$\ln \left(\frac{P_{v a p}}{P_{\text {vap }}^{0}}\right)=\frac{V_{m}}{R T} \frac{2 \gamma}{r}$
Rearrange to give: (5\%)

$$
\frac{R T \ln \left(\frac{P_{v a p}}{P_{v a p}^{0}}\right)}{V_{m} 2 \gamma}=\frac{1}{r} \quad \text { therefore } r=\frac{V_{m} 2 \gamma}{R T \ln \left(\frac{P_{v a p}}{P_{v a p}^{0}}\right)}
$$

Substitute in numbers: (5\%)

$$
r=\frac{V_{m} 2 \gamma}{R T \ln \left(\frac{P_{v a p}}{P_{v a p}^{0}}\right)}=\frac{61.6 \times 10^{-6} \times 2 \times 1.16 \times 10^{-3}}{8.314 \times 298 \times \ln \left(\frac{62.0}{64.0}\right)}=-1.817 \times 10^{-9} \mathrm{~m}
$$

(b)

Langmuir isotherm
$\theta=\frac{K P}{1+K P} \quad$ (2\%)
Rearrange to make pressure the subject
$P=\frac{\theta}{K-K \theta} \quad$ (2\%)
Substitute in numbers
$\frac{\theta}{K-K \theta}=\frac{0.5}{8.5 \times 10^{-4}-\left(0.5 \times 8.5 \times 10^{-4}\right)}=1176 \mathrm{~Pa}$ (1\%)

