Mini Mock Exam

CHE-2C2Y COURSE TEST 2

Name: _____

There are five little random questions in this booklet from the entire course.

Read through the question carefully and answer in full.

No cheating!

Question	Maximum Mark (%)	Your Mark (%)
1	20	
2	20	
3	20	
4	20	
5	20	
	Total Percentage	

Thermodynamics I

1. Calculate $\triangle S$, $\triangle S_{surr}$ and $\triangle S_{tot}$ for:

(a) the isothermal, reversible expansion

(b) the isothermal, free expansion

of one mole of ideal gas molecules from 8.00 L to 20.00 L and 292 K. Explain any differences between the two paths.

[20%]

Model Answer

(a)	$\Delta S = nRln\left(\frac{V_2}{V_1}\right) \qquad (4\%)$	
	$\Delta S = 1 \ x \ 8.314 \ x \ ln\left(\frac{8.00}{20.00}\right) = + \ 7.618 \ J \ K^{-1}$	(4%)
	$\Delta S_{\rm surr} = -7.618 {\rm J} {\rm K}^{-1}$	
	and	
	$\Delta S_{tot} = 0 \ J \ K^{-1} \ (4\%)$	

(b)
$$\Delta S = + 7.618 \, \text{J} \, \text{K}^{-1}$$

and
 $\Delta S_{\text{surr}} = 0 \, \text{J} \, \text{K}^{-1}$
and
 $\Delta S_{\text{tot}} = + 7.618 \, \text{J} \, \text{K}^{-1}$ (3%)

Entropy is a state function so the change in entropy of the system is the same in all cases. For (a) $\Delta U = 0$ so q = -w. The heat that flows out of the system flows into the surroundings. For (b), in a free expansion, no work is done. In which case w = 0. As $\Delta U = 0$ no heat is transferred to the surroundings. (5%)

Thermodynamics 2

2. a. Draw a pressure – temperature phase diagram for a single component mixture ensuring that you show any phase boundaries and label the triple point, critical point, and region of supercritical fluid.

[10%]

b. At 276 K the osmotic pressure of a protein solution is 172 N m⁻². The concentration is 1 g in 200 cm³ of solution. Assuming ideal behaviour calculate:

i. the concentration of the protein in mol m^{-3}

[5%]

ii. the molar mass of the protein in g mol⁻¹

[5%]

Model Answer

(a) See diagram on next page for reference Label axis correctly, and drawing lines in correct places and placing solid, liquid and gas (S, L, G) in the correct places (4%) <u>Labelling phase boundaries correctly: Solid/Liquid: Melting/Eusion & Freezing (1%) </u>

Solid/Liquid: Melting/Fusion & Freezing (1%) Liquid/Gas: Vaporisation & Condensation (1%) Gas/Solid: Sublimation/Desublimation (1%) Labelling of the significant points on the diagram: Triple Point (1%) Critical Point (1%) Supercritical Fluid (1%)

(b)

(i)
$$\pi = RTc_{solute}$$
 therefore $c_{solute} = \frac{\pi}{RT}$
(3%)
 $c_{solute} = \frac{\pi}{RT} = \frac{172}{8.314 \times 276} = 0.075 \text{ mol } m^{-3}$ (2%)
(ii) $c_{solute} = \frac{mass_{sucrose}}{MM_{sucrose} \times volume_{solution}}$ (3%)
Therefore $MM_{sucrose} = \frac{mass_{sucrose}}{c_{sucrose} \times volume_{solution}} = \frac{1}{200 \times 10^{-6} \times 0.075} = 66.7 \times 10^3 \text{ g mol}^{-1}$ (2%)

Complex Kinetics

3. The following Rice-Herzfeld mechanism is shown:

 $\begin{array}{c} CH_{3}CHO \rightarrow CH_{3}^{\bullet} + CHO^{\bullet} & k_{1} & \Box \\ \\ CH_{3}CHO + CH_{3}^{\bullet} \rightarrow CH_{3}CO^{\bullet} + CH_{4} & k_{2} & \Box \\ \\ CH_{3}CO^{\bullet} \rightarrow CH_{3}^{\bullet} + CO & k_{3} & \Box \\ \\ 2 CH_{3}^{\bullet} \rightarrow C_{2}H_{6} & k_{4} & \Box \end{array}$

a. Label which reaction steps are Initiation, Propagation and Termination steps by placing I, P or T respectively in the boxes.

[5%]

b. Apply a suitable approximation to show that the rate of formation of methane can be expressed as:

$$\frac{d[CH_4]}{dt} = k_2 \sqrt{\frac{k_1}{2k_4}} [CH_3 CHO]^{3/2}$$

[15%]

Model Answer

(a) k₁: Initiation

k₂ & k₃: Propagation

k₄: Termination (5%)

(b)

$$\frac{d[CH_4]}{dt} = k_2[CH_3CHO][CH_3] \quad (2\%)$$
CH₃•, CHO• and CH₃CO• are intermediates
Apply SSA to rate equation of CH₃• (3%)

$$\frac{d[CH_3]}{dt} = k_1[CH_3CHO] - k_2[CH_3CHO][CH_3] + k_3[CH_3CO^{-}] - 2k_4[CH_3^{-}]^2$$

$$= 0$$

Apply SSA to rate equation of CH_3CO^{\bullet} (3%)

$$\frac{d[CH_3CO^{\cdot}]}{dt} = k_2[CH_3CHO][CH_3^{\cdot}] - k_3[CH_3CO^{\cdot}] = 0$$

As the two are equal to zero they can be placed equal to one another: (2%)

$$k_{1}[CH_{3}CHO] - k_{2}[CH_{3}CHO][CH_{3}] + k_{3}[CH_{3}CO^{-}] - 2k_{4}[CH_{3}]^{2}$$
$$= k_{2}[CH_{3}CHO][CH_{3}] - k_{3}[CH_{3}CO^{-}]$$

This cancels to give: (2%)

 $k_1[CH_3CHO] - 2k_4[CH_3^{\cdot}]^2 = 0$

And rearranged to give: (2%)

$$[CH_3] = \sqrt{\frac{k_1}{2k_4}} [CH_3 CHO]$$

Inserted into the original equation to give the final answer: (1%)

$$\frac{d[CH_4]}{dt} = k_2 \sqrt{\frac{k_1}{2k_4}} [CH_3 CHO]^{3/2}$$

Theories of Chemical Reactions

4. a. In a temperature jump the relaxation time, τ , is measured. Show that for the reaction

A + B
$$\xrightarrow{k_1}$$
 C + D

the relaxation time is given by

$$\frac{1}{\tau} = \{k_1([\bar{A}] + [\bar{B}]) + k_{-1}([\bar{C}] + [\bar{D}])\}$$

[10%]

b. For an ion combination reaction, $A^+ + B^- \rightarrow AB$, calculate d_{eff} with a dielectric constant of 80. $d_{AB} = 4 \times 10^{-10} m$, $e = 1.6 \times 10^{-19} C$, $\varepsilon_0 = 8.85 \times 10^{-12} J^{-1} C^2 m^{-1}$, $k_B = 1.38 \times 10^{-23} J K^{-1} mol^{-1}$, T = 300 K[10%]

Model Answer

(a)

$$-\frac{d[A]}{dt} = k_{1}[A][B] - k_{-1}[C][D] \quad (1\%)$$

$$-\frac{d[\bar{A}]}{dt} = k_{1}[\bar{A}][\bar{B}] - k_{-1}[\bar{C}][\bar{D}] \quad (1\%)$$

$$-\frac{d([\bar{A}] + \Delta x)}{dt} = k_{1}(([\bar{A}] + \Delta x)([\bar{B}] + \Delta x) - k_{-1}(([\bar{C}] - \Delta x)([\bar{D}] - \Delta x))$$
(2%)

$$-\frac{d[\bar{A}]}{dt} + \frac{\Delta x}{dt} = k_1\{[\bar{A}][\bar{B}] + \Delta x[\bar{A}] + \Delta x[\bar{B}] + \Delta x^2\} - k_{-1}\{[\bar{C}][\bar{D}] - \Delta x[\bar{C}] - \Delta x[\bar{D}] + \Delta x^2\}$$
(2%)

Any term that does not contain Δx or contains Δx^2 is eliminated $\frac{\Delta x}{dt} = k_1 \{ \Delta x[\bar{A}] + \Delta x[\bar{B}] \} - k_{-1} \{ -\Delta x[\bar{C}] - \Delta x[\bar{D}] \} (2\%)$ This is rearranged: (1%)

$$\frac{\Delta x}{dt} = \Delta x \left\{ \{ k_1([\bar{A}] + [\bar{B}]) + k_{-1}([\bar{C}] + [\bar{D}]) \} \right\}$$

And therefore the time constant is given as: (1%)

$$\frac{1}{\tau} = \{k_1([\bar{A}] + [\bar{B}]) + k_{-1}([\bar{C}] + [\bar{D}])\}$$

(b)

$$\delta = \frac{Z_A Z_B e^2}{4\pi\varepsilon_0 \varepsilon_r d_{AB} k_B T} \quad (3\%)$$

$$= \frac{+1 x - 1 x 1.6 x 10^{19^2}}{4\pi x 8.85 x 10^{-12} x 80 x 4 x 10^{-10} x 1.38 x 10^{-23} x 300} = 1.738 \quad (2\%)$$

$$d_{eff} = d_{AB} \left(\frac{\delta}{e^{\delta} - 1}\right) \quad (3\%)$$

$$4 x 10^{-10} \left(\frac{1.738}{e^{1.738} - 1}\right) = 1.484 x 10^{-10} m \quad (3\%)$$

Surface Chemistry

5. a. When contained in the cylindrical pores of a porous material the vapour pressure of CO_2 drops from the normal vapour pressure at 25 °C of 64.0 bar to a lower value of 62.0 bar. Estimate the pore size of the porous material.

Take the molar volume of CO₂ at 25 °C to be 61.6 cm³ mol⁻¹ and the surface tension to be 1.16 mN m⁻¹, R = 8.314 J K⁻¹ mol⁻¹.

[15%]

b. The chemisorption of a gas is described by the Languir isotherm with K = $8.5 \times 10^{-4} \text{ Pa}^{-1}$. What gas pressure would be required to obtain a surface coverage of 0.5?

[5%]

Model Answer

(a)

$$ln\left(\frac{P_{vap}}{P_{vap}^{0}}\right) = \frac{V_m 2\gamma}{RT r}$$
(5%)
Rearrange to give: (5%)

$$\frac{RTln\left(\frac{P_{vap}}{P_{vap}^{0}}\right)}{V_m 2\gamma} = \frac{1}{r}$$
 therefore $r = \frac{V_m 2\gamma}{RTln\left(\frac{P_{vap}}{P_{vap}^{0}}\right)}$

$$\frac{\text{Substitute in numbers:}}{r = \frac{V_m 2\gamma}{RT \ln\left(\frac{P_{vap}}{P_{vap}^0}\right)} = \frac{61.6 \ x \ 10^{-6} \ x \ 2 \ x \ 1.16 \ x \ 10^{-3}}{8.314 \ x \ 298 \ x \ \ln\left(\frac{62.0}{64.0}\right)} = -1.817 \ x \ 10^{-9} m$$

(b)

Langmuir isotherm

$$\theta = \frac{KP}{1+KP}$$
 (2%)
Rearrange to make pressure the subject
 $P = \frac{\theta}{K-K\theta}$ (2%)

Substitute in numbers

$$\frac{\theta}{K-K\theta} = \frac{0.5}{8.5 \, x \, 10^{-4} - (0.5 \, x \, 8.5 \, x \, 10^{-4})} = 1176 \, Pa \quad \textbf{(1\%)}$$

END OF PAPER