Mini Mock Exam

CHE-2C2Y COURSE TEST 2

Name: \qquad

There are five little random questions in this booklet from the entire course.

Read through the question carefully and answer in full.
No cheating!

Question	Maximum Mark (\%)	Your Mark (\%)
1	20	
2	20	
3	20	
4	20	
5	20	
	Total Percentage	

Question 1

Thermodynamics I

1. Calculate $\Delta \mathrm{S}, \Delta \mathrm{S}_{\text {surr }}$ and $\Delta \mathrm{S}_{\text {tot }}$ for:
(a) the isothermal, reversible expansion
(b) the isothermal, free expansion
of one mole of ideal gas molecules from 8.00 L to 20.00 L and 292 K .
Explain any differences between the two paths.
[20\%]

Question 2

Thermodynamics 2

2. a. Draw a pressure - temperature phase diagram for a single component mixture ensuring that you show any phase boundaries and label the triple point, critical point, and region of supercritical fluid.
b. At 276 K the osmotic pressure of a protein solution is $172 \mathrm{~N} \mathrm{~m}^{-2}$. The concentration is 1 g in $200 \mathrm{~cm}^{3}$ of solution. Assuming ideal behaviour calculate:
i. the concentration of the protein in $\mathrm{mol} \mathrm{m}^{-3}$
ii. the molar mass of the protein in $\mathrm{g} \mathrm{mol}^{-1}$

Question 3

Complex Kinetics

3. The following Rice-Herzfeld mechanism is shown:

$\mathrm{CH}_{3} \mathrm{CHO} \rightarrow \mathrm{CH}_{3}^{\bullet}+\mathrm{CHO}^{\bullet}$	k_{1}	\square
$\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{CH}_{3}^{\bullet} \rightarrow \mathrm{CH}_{3} \mathrm{CO}^{\bullet}+\mathrm{CH}_{4}$	k_{2}	\square
$\mathrm{CH}_{3} \mathrm{CO}^{\bullet} \rightarrow \mathrm{CH}_{3}{ }^{\bullet}+\mathrm{CO}$	k_{3}	\square
$2 \mathrm{CH}_{3}^{\bullet} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$		

a. Label which reaction steps are Initiation, Propagation and Termination steps by placing I, P or T respectively in the boxes.
b. Apply a suitable approximation to show that the rate of formation of methane can be expressed as:

$$
\frac{d\left[\mathrm{CH}_{4}\right]}{d t}=k_{2} \sqrt{\frac{k_{1}}{2 k_{4}}}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]^{3 / 2}
$$

Question 4

Theories of Chemical Reactions

4. a. In a temperature jump the relaxation time, τ, is measured. Show that for the reaction

$$
\mathrm{A}+\mathrm{B} \underset{k_{-1}}{\stackrel{k_{1}}{\leftrightarrows}} \mathrm{C}+\mathrm{D}
$$

the relaxation time is given by

$$
\frac{1}{\tau}=\left\{k_{1}([\bar{A}]+[\bar{B}])+k_{-1}([\bar{C}]+[\bar{D}])\right\}
$$

b. For an ion combination reaction, $\mathrm{A}^{+}+\mathrm{B}^{-} \rightarrow \mathrm{AB}$, calculate $\mathrm{d}_{\text {eff }}$ with a dielectric constant of 80 .

$$
\begin{aligned}
& d_{A B}=4 \times 10^{-10} \mathrm{~m}, e=1.6 \times 10^{-19} \mathrm{C}, \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~J}^{-1} \mathrm{C}^{2} \mathrm{~m}^{-1}, \\
& k_{B}=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, T=300 \mathrm{~K}
\end{aligned}
$$

Question 5

Surface Chemistry

5. a. When contained in the cylindrical pores of a porous material the vapour pressure of CO_{2} drops from the normal vapour pressure at 25 ${ }^{\circ} \mathrm{C}$ of 64.0 bar to a lower value of 62.0 bar. Estimate the pore size of the porous material.

Take the molar volume of CO_{2} at $25^{\circ} \mathrm{C}$ to be $61.6 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ and the surface tension to be $1.16 \mathrm{mN} \mathrm{m}^{-1}, \mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$.
b. The chemisorption of a gas is described by the Languir isotherm with $K=8.5 \times 10^{-4} \mathrm{~Pa}^{-1}$. What gas pressure would be required to obtain a surface coverage of 0.5 ?

