Complex Kinetics Explained

Lecture 1

Simple Kinetics

Assume the reaction

$$
A \rightarrow B
$$

The rate equation for the reaction will take the form

$$
-\frac{d[A]}{d t}=k[A]
$$

Solutions for simple rate equation

For the first order reaction this can be integrated and rearranged to get a solution for the concentration of a reactant over time - which is exponential.

Integration

$$
\int_{\left[A_{0}\right]}^{[A]} \frac{d[A]}{[A]}=-k \int_{0}^{t} d t
$$

Solution (note that integral $1 / x=\ln x$)

$$
\ln \frac{\left[A_{0}\right]}{[A]}=k t \quad \text { or } \quad[A]=\left[A_{0}\right] e^{-k t}
$$

For a second order reaction

$$
2 A \rightarrow B
$$

Rate equation

$$
-\frac{d[A]}{d t}=k[A]^{2}
$$

Integral

$$
\int_{\left[A_{0}\right]}^{[A]} \frac{d[A]}{[A]^{2}}=-k \int_{0}^{t} d t
$$

Solution

$$
\frac{1}{[A]}-\frac{1}{\left[A_{0}\right]}=k t \quad \text { or } \quad[A]=\frac{\left[A_{0}\right]}{1+k t\left[A_{0}\right]}
$$

Series (consecutive) reactions

Imagine the reaction

$$
A \rightarrow_{k 1} B \rightarrow_{k 2} C
$$

We can write down the rate equation for each component which results in a system of coupled differential equations:

$$
\begin{gather*}
-\frac{d[A]}{d t}=k_{1}[A] \tag{1}\\
\frac{d[B]}{d t}=k_{1}[A]-k_{2}[B] \tag{2}\\
\frac{d[C]}{d t}=k_{2}[B] \tag{3}
\end{gather*}
$$

Note the sign convention: the rate of reactant consumption (1) is negative, whilst for product formation (3) it is positive. By convention rates for intermediates (2) are positive.

The exact solution is possible here - one overall rate equation.

The exact solutions

From equation (1) we can solve and express the rate equation in terms of [A]:

$$
\begin{equation*}
[A]=\left[A_{0}\right] e^{-k_{1} t} \tag{4}
\end{equation*}
$$

This can be substituted into another differential equation that we made earlier (2) to make (5):

$$
\begin{gather*}
\frac{d[B]}{d t}=k_{1}[A]-k_{2}[B] \tag{2}\\
\frac{d[B]}{d t}=k_{1}\left[A_{0}\right] e^{-k_{1} t}-k_{2}[B] \tag{5}
\end{gather*}
$$

This can again be solved and expressed in terms of [B] (by multiplication by an integrating factor):

$$
\begin{equation*}
[B]=\left[A_{0}\right] \frac{k_{1}}{k_{2}-k_{1}}\left[k_{2}\left(1-e^{-k_{1} t}\right)-k_{1}\left(1-e^{-k_{2} t}\right)\right] \tag{6}
\end{equation*}
$$

This can be substituted into another differential equation that we made earlier (3) to make (7):

$$
\begin{gather*}
{[C]=\left[A_{0}\right]-[A]-[B]} \\
{[C]=\left[A_{0}\right]-\left[A_{0}\right] e^{-k_{1} t}-\left[A_{0}\right] \frac{k_{1}}{k_{2}-k_{1}}\left[k_{2}\left(1-e^{-k_{1} t}\right)-k_{1}\left(1-e^{-k_{2} t}\right)\right]} \\
{[C]=\frac{\left[A_{0}\right]}{k_{2}-k_{1}}\left[k_{2}\left(1-e^{-k_{1} t}\right)-k_{1}\left(1-e^{-k_{2} t}\right)\right]} \tag{7}
\end{gather*}
$$

Even for this very simple composite scheme the equations are complex and non exponential

Limiting Cases

Let's look at our composite reaction again:

$$
A \rightarrow_{k 1} B \rightarrow_{k 2} C
$$

What happens when $k_{1} \gg k_{2}$
The first reaction from $A \rightarrow B$ is really fast, whereas $B \rightarrow C$ is really slow.
What happens when $\mathrm{k}_{1}=\mathrm{k}_{2}$
The first reaction from $A \rightarrow B$ is the same rate as $B \rightarrow C$.
What happens when $\mathrm{k}_{1} \ll \mathrm{k}_{2}$

The first reaction from $A \rightarrow B$ is really slow, whereas $B \rightarrow C$ is really fast.

Steady State Approximation (SSA)

The rate of reaction of reactive intermediates can be set equal to zero. This approximation dramatically simplifies the solution to composite reaction kinetics:

$$
\frac{d}{d t}[I]=\cdots=0
$$

Assumptions

- The concentrations of all intermediates remain constant and small throughout the composite (complex) reaction (except right at the beginning and right at the end.
- The intermediate goes away as soon as it is made (highly reactive)

Remember that the SSA should be applied to reactive intermediates after the induction period.

What does expression for [C] reduce to under SSA?

Let's reconsider the reaction

$$
\begin{gather*}
A \rightarrow_{k 1} B \rightarrow_{k 2} C \\
-\frac{d[A]}{d t}=k_{1}[A] \tag{1}\\
\frac{d[B]}{d t}=k_{1}[A]-k_{2}[B] \tag{2}\\
\frac{d[C]}{d t}=k_{2}[B] \tag{3}
\end{gather*}
$$

The application of the SSA assumes that any intermediates have no net rate of reaction:

$$
\frac{d[B]}{d t}=k_{1}[A]-k_{2}[B]=0
$$

Therefore:

$$
[B]=\frac{k_{1}[A]}{k_{2}}
$$

Which we can substitute into equation (3)

$$
\begin{aligned}
& \frac{d[C]}{d t}=k_{2}[B] \quad[B]=\frac{k_{1}[A]}{k_{2}} \\
& \frac{d[C]}{d t}=k_{2}[B]=k_{2} \frac{k_{1}[A]}{k_{2}}=k_{1}[A]
\end{aligned}
$$

And then substitute our first elementary solution (4) to get a final result:

$$
\begin{gather*}
{[A]=\left[A_{0}\right] e^{-k_{1} t}} \tag{4}\\
\frac{d[C]}{d t}=k_{1}[A]=k_{1}\left[A_{0}\right] e^{-k_{1} t} \tag{9}
\end{gather*}
$$

Equilibrium Reactions

So far we have only looked at reactions which proceed all the way, but what about equilibrium reactions?

$$
A \underset{\leftarrow k_{-1}}{\rightarrow k_{1}} B \rightarrow k_{k_{2}} C
$$

It is a system of coupled differential equations and even more complex to solve

$$
\begin{gather*}
-\frac{d[A]}{d t}=k_{1}[A]-k_{-1}[B] \tag{10}\\
\frac{d[B]}{d t}=k_{1}[A]-k_{-1}[B]-k_{2}[C] \tag{11}\\
\frac{d[C]}{d t}=k_{2}[B] \tag{12}
\end{gather*}
$$

But assume that both k_{1} \& $\mathrm{k}_{-1} \gg \mathrm{k}_{2}$.
Then the reversible reaction is establishing a fast equilibrium and [B] changes slowly.

Quasi-equilibrium (fast equilibrium) approximation (QEA)

$$
A \underset{\leftarrow k_{-1}}{\rightarrow k_{1}} B \rightarrow_{k_{2}} C \quad \text { where } k_{1} \& k_{-1} \gg k_{2}
$$

Differential Equations

$$
\begin{gather*}
-\frac{d[A]}{d t}=k_{1}[A]-k_{-1}[B] \tag{10}\\
\frac{d[B]}{d t}=k_{1}[A]-k_{-1}[B]-k_{2}[C] \tag{11}\\
\frac{d[C]}{d t}=k_{2}[B] \tag{12}
\end{gather*}
$$

Pre-equilibrium condition

$$
\begin{gathered}
k_{1}[A]=k_{-1}[B] \\
\frac{[B]}{[A]}=\frac{k_{1}}{k_{-1}}=K_{e q}
\end{gathered}
$$

And therefore:

$$
\frac{d[C]}{d t}=k_{2}[B]=k_{2} K_{e q}[A]=\frac{k_{1} k_{2}}{k_{-1}}[A]
$$

To be added to: James 31/03/2014

