Inorganic Chemistry

Cheesman

Contents

Mononuclear Electronic

Mononuclear Magnetic

Crystal Field Theory

Dinuclear

Polynuclar

Extended Structures

Mononuclear Electronic

Mononuclear Complexes | Electronic

Free Transition Metal Ion (no ligands, spherical symmetry)

- s, p, d, f wave functions result from Schrödinger's equation for Hydrogen atom
- He onwards is complicated due to electron-electron repulsion
- Use hydrogen orbitals as a basis set

The electronic configuration (d³)

How many electrons are in the d-shell that can be arranged in multiple ways in the d-orbitals

Orbital Angular Momentum

Angular momentum properties for single orbital wave functions

	S	р	d	f
l	0	1	2	3
m _l	0	+1, 0, -1	+2, +1, 0, -1, -2	Etc

Total orbital angular momentum (L)

Total spin angular momentum (S)

- Derived from arrangement of the spins of the individual electrons
- Due to the valence electrons
- Filled subshells don't contribute as they have total angular momenta of L=0 and S=0

Term Symbols

- Energy levels are labelled using term symbols showing values of L and S
- Needed to explain spectroscopic and magnetic properties

(2S+1)

⁴F

Example

Identifying the Term Symbols

Single Electron

- Takes Spin and Orbital Angular Momentum of single electron
- ▶ $s^1 \rightarrow {}^2S, d^1 \rightarrow {}^2D$

Multiple Electrons

- Identify all possible arrangements, microstates, of electrons using pauli exclusion principle
- Adding the m_l and m_s of each state to give total M_L and M_s
- Groups of degenerate microstates represent the components of that term
- Identify the highest value of M_L
- This must have $M_s = 0$ and will group with other M_L values $M_s = 0$ to give term ¹L (grey)
- The next highest M_L will have more than one microstate with different spins. These will give ³(L-1) states etc..

Identifying the Ground Term

Hund's Rule | The most stable term is predicted by

- S has the highest value allowed by Pauli,
- Then, L has the highest possible value

Quick Method

Draw 5 d orbitals, labelled with m_l values and feed in electrons +2 onwards

$$m_{l} = +2 +1 \quad 0 \quad -1 \quad -2$$

$$\uparrow \quad \uparrow \quad \uparrow \quad \uparrow$$

- Add up m_l values to give (+)2 = L=2 = D
- Add up spins of 4 electrons: 4 x (+)1/2 = S=2 = 2S+1 = 5
- ► Ground term is ⁵D

What are the ground terms for

How many states are within each of these terms

Work out degeneracy of L (2L+1) Work out degeneracy of S (2S + 1) Multiply together to get total number of states

Contents

Mononuclear Electronic

Mononuclear Magnetic

Crystal Field Theory

Dinuclear

Polynuclear

Extended Structures

Mononuclear Magnetic

Magnetic Properties | Electron

Spin Angular Momentum s

$$|\mathbf{s}| = \sqrt{s(s+1)\overline{h}}$$

Magnetic Moment

Combination of **s** and the charge (-e) gives the electron a magnetic moment

$$\mu = -\frac{g_e \mu_B s}{\overline{h}}$$

The Zeeman Interaction

Magnetic moment of electron has different energies when aligned with or against a magnetic field

$$\Delta E = g_e \mu_B B$$

Magnetic Field, B

Magnitude of Zeeman Splitting

For 1 Tesla magnetic field

 $\Delta E = 1.8 \ x \ 10^{-23} J$ = 1 cm⁻¹ (microwave)

Magnetic Properties | Electron

Temperature Dependence

- Sample containing molecules with one unpaired electron in magnetic field
- Thermal equilibrium between +1/2 and -1/2 states
- Magnetic moment is cancelled out
- Only slight excess in ground state leads to magnetisation M
- Net bulk magnetisation is derived from measurements of magnetic susceptibility X
- Use a faraday balance

By Boltzmann, $M \propto \frac{1 - e^{-\Delta E/kT}}{1 + e^{-\Delta E/kT}}$ but when $\Delta E \ll kT$, $M \propto \Delta E/kT$.

Magnetic Properties | Electron

Curie Temperature

- ► M or X are linearly proportional to temperature at high temperature
- Curie region at low 1/T
- Many **PARAMAGNETS** obey the **Curie Law** $\chi = \frac{c}{r}$
- Often get better fit using **Curie-Weiss** $\chi = \frac{C}{T+\theta}$
- \triangleright θ is the Weiss constant

Measuring Magnetic Properties

vacuum

paramagnet

diamagnet

Superconductor (Meissner)

Measuring Magnetic Properties

- Boltzmann population differences increase in higher magnetic fields
- This leads to a lower total energy
- A paramagnet is pulled into regions of higher magnetic field intensity

Traditional Methods

- Faraday balance
- Gouy balance

Modern Method

SuperConducting Quantum Interface Device (SQUID)

intensity of magnetisation or magnetic moment per unit volume

 $\mathbf{B} = \mathbf{H} + 4\pi\mathbf{I}$ D

magnetic field strength

magnetic flux density

susceptibility per volume

$$\mu = \frac{B}{H} = 1 + 4\pi i$$

magnetic permeability

 $\kappa \rightarrow \chi \rightarrow \chi_m$ molar susceptibility

BALANCE

Extracting μ from χ

- A raw measurement of paramagnetism via χ will display a strong temperature dependence
- We are interested in μ the magnetic moment of the individual paramagnetic transition ion
- This will tell us how many unpaired electrons are present
- > μ is obtained from χ by removing the effect of temperature
- At high temperatures the magnetic susceptibility χ is proportional to 1/T in the curie region
- Magnetic moment can be obtained from the equation

$$\mu^{2} = \left(\frac{3k}{\mu_{0}N\mu_{B}^{2}}\right)(\chi T) = 6.636 \ x \ 10^{5}(\chi T)$$

The magnetic moment is usually called the *effective magnetic moment* μ_{eff}

Mononuclear Magnetic

Magnetic Moment µ arises from both S & L

- Magnetism does not just contain spin of single electron (S=1/2) but also L.
- L results from the freedom of electron to move between orbitals and rotate around the nucleus
- For free ions, the quantum numbers L and S are known from the term symbol
- Van Vleck's equation:

 $\mu_{L+S} = [L(L+1) + 4S(S+1)]^{1/2} \mu_{B}$

Magne	etic Susce	ptibilities	for High Spin Tra	ansition N	Aetal lons	5
number of d-electrons	L	S	Free-ion ground term	μL+S	μς	µ _{obs}
1	2	1/2	² D	3.00	1.73	1.7-1.8
2	3	1	³ F	4.47	2.83	2.8-2.9
3	3	3/2	⁴ F	5.20	3.87	3.7-3.9
4	2	2	⁵ D	5.48	4.90	4.8-5.0
5	0	5/2	⁶ S	5.92	5.92	5.8-6.0
6	2	2	⁵ D	5.48	4.90	5.1-5.7
7	3	3/2	⁴ F	5.20	3.87	4.3-5.2
8	3	1	³ F	4.47	2.83	2.9-3.9
9	2	1/2	² D	3.00	1.73	1.7-2.2

Symmetry-Quenched Magnetic Moments

- Sometimes the magnetic moments observed are lower than those of the free ion
- This is because we assume that L = 0 and the Van Vleck's formula reduces to the spin only formula

$$\mu = 2\sqrt{(S(S+1))}$$

Example

 $K_{3}Mn(CN)_{6} \mu = 4.81 \mu_{B}$

Mn(III) is d⁴. Strong field cyanide ligand puts all electrons in the t_{2g} orbitals and so there are *two* unpaired electrons. The spin-only magnetic moment for this would be 2.83 μ_B . The additional magnetic moment arises from a contribution to the total angular momentum

E SA SE S STORDER ERROR HE INC. AND AND IN

from *orbital* angular momentum. i.e. orbital angular momentum (L) adds to the spin angular momentum (S). This is present because one of the electrons is delocalised over three orbitals or it can be viewed as moving between the three orbitals. There is no energy restriction on this movement since the three t_{2g} orbitals are degenerate; there is no spin restriction as the electron "moves" through orbitals containing an electron of the opposite spin.

Example

 K_3FeF_6 µ=5.90 µ_B

 $K_3 FeF_6$, $\mu = 5.90 \mu_B$

Fe(III) is d⁵. Weak-field fluoride ligands give small Δ_{oct} and electrons occupy all orbitals. Although each unpaired electron has half-filled degenerate orbitals to "move" into, this movement is blocked by the spins - it would violate Pauli principle.

So there is no L contribution and the spin-only value is observed.

Example

 K_3MnOx_3 Spin-only

```
K_3MnOx_3, \mu = 4.81 \mu_B. Spin-only
```

Mn(III) is d⁴. A weak octahedral ligand field should allow "movement" within e_g orbitals and so a non-zero L should result. But spin-only value is observed. Explanation?

Complex is distorted. This lowers the symmetry and raises the degeneracy of orbitals thus restricting electrons to their respective orbitals.

The orbital angular momentum, L, is said to be quenched by the ligand field.

Contents

Mononuclear Electronic

Mononuclear Magnetic

Crystal Field Theory

-	
	7
1	

Dinuclear

Polynuclear

Extended Structures

ystal Field Theory

Crystal Field Theory

- Each ligand is a point electronic charge bound to the metal cation
- Effect on energy with relative d orbital

ML₆

- 1. Surround metal with spherical shell of negative charge (barycentre)
- 2. Localise charge to six point charges
- 3. The d_z^2 and d_{x2-y2} will raise in energy as they are repelled more along the axis
- 4. The d_{xy} , d_{yz} , d_{zx} orbitals drop in energy as they are inbetween the axis

Tetrahedral coordination gives a reversed order of splitting, with $\Delta_{tet} \approx (4/9)\Delta_{oct}$.

rystal Field Theory

LFSE

For octahedral

► LFSE = [(0.4 x t_{2g} electrons) - (0.6 x e_g electrons)] Δo + P

P = extra pairing energy compared to if it was not in a ligand field (5 degenerate orbitals)

For tetrahedral $\left(\Delta tet = \frac{4}{9}\Delta o\right)$

► LFSE = [(0.6 x t_{2g} electrons) - (0.4 x e_g electrons)] Δtet + P

Spectroscopic: CFT explains the colour of some transition metal complexes.

e.g. The 375 nm absorption band that makes [Cr(CN)₆]³⁻ yellow in colour.

<u>Magnetic</u>: different spin states for specific oxidation states of a metal ion. e.g. d^5 Large Δ_{oct} > electron repulsion (pairing energy) gives low-spin S=1/2 state. A smaller Δ_{oct} < electron repulsion results in the high-spin S=5/2 state.

Spectrochemical Series

	$\sigma/\pi-donor$	σ – donor	σ – donor π – acceptor		
* **	High Spin	High Spin	Low Spin	↑↓↓↓	
High Spin Weak Field Small ∆0	Halogens Sulphur I ⁻ < Br ⁻ < S ²⁻ < <u>S</u> CN ⁻ < Cl ⁻ < NO ₃ ⁻ < F ⁻	Oxygen < HO ⁻ < C ₂ O ₄ ²⁻ < H ₂ O ⁻	Nitrogen Carbonyls Carbonyls Amines Phosphines < <u>NCS < CH₃CN < NH₃ < en < bipy < phen < NO₂ ⁻ < PPh₃ < CN ⁻ < CO</u>	Low Spin Strong Field Large Δo	

Increases with oxidation state

Higher charge \rightarrow smaller ion \rightarrow shorter M-L

Increases going down a group Expanded 4d and 5d = better M-L bonding

Molecular Orbital Theory

Molecular Orbital Theory

Orbital Overlap

A bond can only be formed when two atomic orbitals of two atoms overlap

Orbitals must be of similar energy

To simplify the theory in our context, the 4s and 4p orbitals on the metal atom are ignored.

Recall the different types of donor/acceptor behaviour

Sigma Donor

Ligands point along axis Example, Cl⁻

Sigma Donor

For the Cl⁻ ion:

Electrons are in a p-orbital

Can be donated to form a sigma bond by overlapping with e_g orbitals Metal based e_g raised in energy

No net overlap with t_{2g} Hence energy of t_{2g} unchanged

Sigma Donor

Molecular Orbital Diagram

Effect of Sigma Donation

What happens as strength of sigma donation increases?

Energy of interaction increases

Splitting between the bonding and anti-bonding orbitals gets larger

e_g moves higher in energy

Ligand field splitting (Δo) increases

Pi donor

Certain p-orbitals can interact with t_{2g} to give pi bonds Overlap is possible *Example Cl*⁻

No net overlap with e_g sets

Effect of Pi Donation

What happens when Pi Donor interactions increases?

Energy of inter-actions increases

Splitting between bonding and anti-bonding orbitals increases

 t_{2g} moves higher in energy

Ligand field splitting (Δo) decreases

Complete Molecular Orbital Diagram

Combination of sigma and pi donor interactions

Metal orbitals involved are the same as pi donor

Symmetry of atomic orbital overlap determines sigma or pi interaction Only interacts with $t_{\rm 2g}$

Pi acceptor

Requirements

Ligand must have an empty or partially filled orbital of pi symmetry

Accepting electron density

Typically anti-bonding orbitals

Results in Back Donation Examples, CO and CN⁻

Pi acceptor

Molecular Orbital Diagram

Pi acceptors increases Δo

Electronic Spectra

- Place terms on a diagram to work out transitions
- As octahedral ligand field is imposed, terms split and move further apart as ligand strength increases
- Distances between lines is proportional to energy not intensity

Orgel Diagram

- Lowest line is ground state
- Same spin multiplicity as ground state are allowed

- Related to a Racah parameter
- Ground state runs along the x-axis

Selection Rules

- More 'allowed' transitions have greater intensities <u>not energies</u>!
- $\blacktriangleright \quad \Delta L = \pm 1$
- $\blacktriangleright \Delta S = 0$
- For d-d transitions all should be weak due to L rule but d orbitals not purely d for non hydrogen atom due to mixing of orbitals with p.
- ► Laporte rule (g \leftarrow → g and u \leftarrow → u forbidden) But u \leftarrow → g Allowed
- Therefore $t_{2g} \leftrightarrow e_g$ Forbidden (octahedral)
- ► $t_2 \leftrightarrow i$ e allowed (tetrahedral)

Numbers

	T
Transition Type	Typical epsilon (M ⁻ ' Cm ⁻ ')
Pi - Pi*	10,000 - 100,000
СТ	10,000 - 100,000
Spin allowed, Laporte Allowed	500
Spin allowed, Laporte Forbidden	10
Spin Forbidden, Laporte Forbidden	0.1

Contents

Mononuclear Electronic

Mononuclear Magnetic

Crystal Field Theory

60	

Dinuclear

Polynuclear

Extended Structures

Dinuclear
Cages and Clusters

- Cages (M L M)
 Super exchange via ligands and magnetism
 Copper acetate nonohydrate
- Cluster (M M)
 Multiple bonds and δ molecular orbitals
 Chromium acetate nonohydrate

Cages Copper acetate nonohydrate

• Cu-Cu 2.64 A (longer than 2.56 A in metallic copper)

Cages Copper acetate nonohydrate

Unpaired electron in singly degenerate orbital

Magnetic susceptibility X drops at low temperatures

Becomes diamagnetic < 77 K

Room temperature EPR signal

EPR disappears < 77 K

Dinuclear

Coupling of spins

Coupling of spins

 $S_1 + S_2$ to give maximum spin $S_1 - S_2$ to give minimum spin

Every other spin state = subtracting 1 from maximum until you reach minimum

J is positive for *ferromagnetic coupling*

J is negative for *antiferromagnetic coupling*

Copper acetate

For copper acetate $S_1 = \frac{1}{2}$ $S_2 = \frac{1}{2}$ \Rightarrow S' = 1 or 0

Drop temperature, bottom level is filled more than top Hence Cu acetate is antiferromagnetic due to RT EPR spectrum

Cages Magnetic Exchange

Nature of M - M interaction is through the ligand

Ligand mediated coupling is *super* exchange

Spin polarisation across the three atoms favours pairing of spins, leads to antiferromagnetic coupling (with exceptions)

Ferromagnetic coupling requires orthogonality in coupling pathway. High symmetry required and is rare

Clusters Chromium acetate nonohydrate

Evidence for M - M Cr - Cr = 2.36 A (<u>shorter</u> than that found in metal 2.58 A)

Evidence for M - M

Eclipsed structures and possible formation of quadruple bonds

Short bond lengths (bond length increases with higher bond order)

Short bond lengths have higher vibrational frequencies

Overlap of d orbitals in M₂ fragment

Overlap of d orbitals in M₂ fragment

d/d* orbitals can only exist when the molecule has elipsed alignment. The formation of the d/d* orbitals rests the complex better than it being staggered due to steric strain

Dinuclear

Evidence of d-bond

Several transitions can be observed for the $[Tc_2Cl_8]^{3^-}$ ion: LMCT 31400 cm⁻¹ (318 nm) $\delta^* \rightarrow \pi^*$ 20000 cm⁻¹ (500 nm) $\pi \rightarrow \delta^*$ 13600 cm⁻¹ (735 nm) $\delta \rightarrow \delta^*$ 5900 cm⁻¹ (1695 nm) (Cotton *et al.* (1977) JACS **99** 5642) The $\delta \rightarrow \delta^*$ electronic change is associated with significant extension of the M–M bond (~1 Å) leading to the observation of up to 10 vibrational overtones. These can be analysed (Birge-Sponer extrapolation) to obtain *estimates* of bond dissociation energies: **kJ.mol⁻¹ K**_4[Mo_2Cl_8] 722 ±84

kJ.mol ⁻¹		K ₄ [Mo ₂ Cl ₈]	722 ±84
[n-Bu ₄ N] ₂ [Re ₂ Cl ₈]	638 ±80	Rb ₄ [Mo ₂ Cl ₈]	798 ±105
[n-Bu ₄ N] ₂ [Re ₂ Br ₈]	584 ±105	Cs4[Mo2Cl8]	533 ±63

Valence Delocalised

When you reduce this Cu_A species by one electron, the electron. It is shared...

 $\mathrm{Cu^{II}~Cu^{II}} \rightarrow \mathrm{Cu^{1.5}~Cu^{1.5}}$

- The MO is delocalised across both copper ions.
- Transitions can occur from this MO to higher antibonding Mos and this transition can be intense (Cu_A is blue/purple)

Valence Trapped

- Prussian Blue KFe^{III}[Fe^{II}(CN)₆]
- Inter Valence Charge Transfer Band
- Distinct ligand environments lock oxidation states in place
- Reduction of Fe^{III} to Fe^{II} is colourless
- pi system of cyanide cruicial for charge transfer process
- Similar IVCT bands from low level iron in brown glass and brown sandstone

Valence Trapped (More Examples)

E1

- Corrundum (Crystalline Al₂O₃)
- Little titanium = colourless
- Little iron = very pale yellow
- Both Ti and Fe = Intense blue sapphire
- ► IVCT band of Fe^{2+} → Ti^{4+} transition
- Oxidation states briefly altered while the molecule is in the excited state

Intermediate Behaviour

- Creutz-Taube ion
- Any degree of valence trapping e.g. Ru^{2.4+} Ru^{2.6+} leads to slightly different bond lengths
- Franck-Condon: electron jump instantanoues
- **Then** ligand environment relaxes
- Transition is IVCT like <u>but</u> bond lengths are optimised shortly after oxidation

Dinuclear

Strength of Electronic Interactions

Class	α	Band	Interaction	
1	~ 0	none or at very high energy	none	Oxidation states trapped. No easy interconversion. Encouraged by very different ligand fields. [(H ₃ N) ₅ Ru ³⁺ ·Pyz·Ru ²⁺ Cl(bipy) ₂] ⁴⁺
	0 − 1/√2	IVCT (VIS/nIR)	intermediate	Oxidation states of sites distinct but can interconvert. Typically occurs when sites similar but not equivalent. [(bipy) ₂ ClRu·Pyz·RuCl(bipy) ₂] ³⁺ (distorted with O.S.)
III	> 1/√2	Yes! But not pure IVCT e.g. CT, σ→σ* (VIS/nIR)	very strong	Individual sites not distinguishable. Orbital delocalisation. Better considered as united site. For same ions, oxidation states are essentially equivalent and the two metals best described as having same half integer oxidation state. Probably Creutz-Taube [(H ₃ N) ₅ Ru ^{2.5+} ·Pyz·Ru ^{2.5+} (H ₃ N) ₅] ⁵⁺

Contents

Mononuclear Electronic

Mononuclear Magnetic

Crystal Field Theory

Dinuclear

Polynuclear

Extended Structures

Trinuclear - Same properties as dimers

- Cages M L M
- ► Copper acetate behaviour \rightarrow [Cr₃O(O₂CC₆H₅)₆(py)₃]ClO₄
- Even though each interaction is antiferromagnetic due to superexchange, the moments on each three centres can not be cancelled

SPIN FRUSTRATION

- Spin states couple in the same way
- Couple S_1 with S_2
- Couple each state with S_3

- Clusters M M
- ► Chromium acetate behaviour \rightarrow Cs₃[Re₃Cl₁₂]
- Has Re-Re double bonds
- Lower Halides
- Early block transition metals in low oxidation states
- No M-M bonds ever seen for > (VI) due to d-orbital contraction
- High order M-M bonds encountered
- Steric effects compete with electronic
- <18 electron complexes often seen</p>

Polynuclear

18 electron counting

- Re (group 7)
 - Re 7
- 3 x terminal Cl⁻ 3
- share of 2 x bridging Cl^{-3}
 - 2 x double bonds 4
 - net charge 1
 - Total 18

18 electron counting on dimers

	[W ₂ Cl ₉] ³⁻		[Mo ₂ Cl ₈] ⁴⁻		[Re ₂ Cl ₈] ²⁻
6	W (group 6)	6	Mo (group 6)	7	Re
3	3 x terminal Cl ⁻	4	4 x terminal Cl ⁻	4	4 x terminal Cl ⁻
4 ½	3 x bridging Cl	4	quadruple bond	4	quadruple bond
3	triple bond	2	net charge	1	net charge
1 ½	Charge	16	Total	16	Total
18	Total				

18 electron rule not as uniformly obeyed for d block as you go down group d - d bonds are general feature of early d-block elements in low oxidation states

These tend to follow 18 electron rule, especially carbonyls

Carbonyl Cluste	ers	Usua	ally <1	<u>18-e</u> 18 (ste	lectr eric)	<u>on r</u> Usu	ule? ally 1	8	16		
	[Fe(CO) ₅] Fe: $(3d^{6}4s^{2})$	wit	Metal h p-do	cluster nor lig	rs ands	W	Me /ith p-a	tal clu: accepto	sters or ligan	ds	
	JXCO	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	
$\frac{2}{2}c^{0}$	$[Mn_2(CO)_{10}]$ Mn: $(3d^54s^2)$	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	
OC-Mn-Mn-CO OC G O G	Single bond	La - Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	
	Fe ₂ (CO) ₉ Fe ⁰ : d ⁸ 3 x terminal CO 1 ¹ / ₂ x bridging CO 1 single bond										
$ \begin{array}{c c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ $	$M_{3}(CO)_{12}$ $M^{0}: d^{8}$ $4 \times CO$ 2 single bonds										2
For Co and Rh, symmetry is lowered by some CO moving to edge bridging positions.	Ir ₄ (CO) ₁₂ Ir ⁰ : d ⁹ 3 x term. CO 3 single bonds										

Carbon Monoxide

1600-1800 cm⁻¹

1700-1900 cm-1

1900-2050 cm-1

Weak 2 electron sigma donor An extremely good pi acceptor Polynuclea

Nitric Oxide NO

- Normally NO written as NO⁺ as a 3 electron donor
- Anti bonding pi electron transferred to metal giving a NO $^+$ (nitrosonium ion) ligand This is a two electron sigma donor analogous to CO
- It is approximately linear (160 180 ⁰)
- The odd electron is removed from anti bonding orbital, the stretching frequency is usually similar or greater than NO itself
- Due to charge NO⁺ is much better pi acceptor ligand showing better levels of back bonding
- Pi acceptor ligand strengths CN ⁻ < NN < CO < NO⁺ (isoelectronic)

Some complexes better describe it as NO or even NO⁻ (nitroxyl) This is bent (120 - 135 ^o) Do not need linear for pi overlap No analogous behaviour to CO

Nitric Oxide NO

	N-O (Å)	$v_{\rm NO}~(\rm cm^{-1})$	
NO ⁺	1.06	2200-2400	in nitrosonium salts e.g. NO ⁺ BF ₄ ⁻ (bond order 3)
"Linear	NO ⁺ " in meta	l complexes:	
	$\nu_{\rm N}$	$_{\rm 0}$ 1630-1940 cm ⁻¹ .	∠ M-N-O 160-180°
		1935	$[Fe(CN)_5NO]^{2^-} nitroprusside ion diamagnetic short N-O 1.13 Å NO+ complex of Fe2+ (178 °)$
		1925	met-Hemoglobin + NO
NO	1.15	1876	gaseous form (bond order 2.5)
		1867	$[Fe(NO)(mnt)_2]^-$ (180 °)
		1852	$[Co(diars)(NO)]^{2+}$ (179°)
		1745	$[Fe(H_2O)_5NO]^{2^+}$ (brown ring test for nitrate) $\mu_{eff} = 3.9 \text{ B.M.} = 3 \text{ upe } d^7 \text{ Fe}^1 \text{ NO}^+$
		1700-1900	Co(NO) ₃ , Fe(NO) ₂ (CO) ₂ , (NO)(CO) ₅
		1645	$[Fe(NO)(mnt)_2]^2$ (165 °)

"Bent NO" in metal complexes:

	$v_{\rm NO}$ 1520-1720 cm ⁻¹	∠ M-N-O	120-135°
"NO"			
10	1720	[Ir(CO)I(NO)(PPh ₃) ₂]BF ₄ .C ₆ H ₆	(124°)
	1626	$[Co(NO)(S_2CNMe_2)_2]$	(~ 135°)
art art	1610	$[Co(NH_3)_5NO]^{2+}$	(119°)
0 1 2	1525	$[Ir(CH_3)I(NO)(PPh_3)_2]^+$	(120°)
"NO"	1150-1170	Rare. Only in complexes so des again approximate.	cription

As with CO, the frequency v_{NO} also drops with bridging to > 1 metal.

Large Clusters - Wades Rules

As cluster size increase, 18 electron rule fails

A similar approach provides some degree of understanding of the structures of larger transition metal complexes which do not follow the 18-electron rule. It is argued that an $M(CO)_3$ group can be treated in a similar manner to the B-H unit.

Each metal has NINE valence orbitals. SIX hybrid orbitals form σ/π double bonds to each CO. The bonding electron framework forms using 3 orbitals from each metal.

Rh₆(CO)₁₆ by Wade?

Remaining 3 orbitals form bonding framework.

After bonding to apical H, each B-H unit has 2 remaining valence $e^{-} = 12$ electrons. Plus charge of $[B_6H_6]^{2-}$ ion = total of 14 electrons.

In general, (n+1) PAIRS of framework bonding electrons stabilise a structure based on a regular deltahedron of order n.

Large Clusters - Wades Rules

As cluster size increase, 18 electron rule fails

Os ₆ (CO) ₁₈		Rh ₆ (CO) ₁₆
6 x Os	54	6 x Rh
16 x CO	32	16 x CO

- TOTAL ELECTRONS TOTAL ELECTRONS 86 84
- Use 6 orbitals per metal - 72 for M-CO bonds

Electrons left for bonding framework

> **Electron Pairs** (n+1) with n = 6

14

Use 6 orbitals per metal - 72 for M-CO bonds

48

36

Electrons left for 12 bonding framework

Electron Pairs

Capped Trigonal Bipyramid

Octahedron But octahedral edges aren't bonds Did not actually have 3 CO per metal

These rules compare it to the points of an octahedron

Polynuclear

Contents

Mononuclear Electronic

Crystal Field Theory

Dinuclear

Polynuclear

Extended Structures

Paramagnets

- Drop in temperature increases magnetisation due to population of states etc etc etc
- Curie temperature and that shit (go back to slide 12)
- ► NO INTERACTION ON SPIN BETWEEN DIFFERENT MOLECULES Ferromagnets
 - Interaction tending to align the spins
 - As T drops, X increases more rapidly than expected due to the spin-spin interaction
 - The curie temperature thermal randomisation is overcome and all the spins align, sample has net magnetisation

Antiferromagnets

- Interaction tending to align neighbouring spins antiparralel
- As T drops, X decreases more rapidly than expected.
- Neel temperature thermal randomisation overcome by coupling and the spins lock down onto the two interpenetrating sublattices with antiparralel allignments
- Usually result of superexchange

Ferrimagnets

- Subclass of antiferromagnets
- Moments do not cancel due to differences in spin
- Large moment can persist below critical temperature (Curie temperature)

Fe₃O₄ Magnetite

- Original ferrimagnet, can be permanently magnetised
- Magnetised by earths magnetic field
- Inverse spinel structure
- Adopted by AB₂O₄ materials based on face-centred cubic structure of oxide ions

	T _d sites	O _h sites	Oxides
per unit cell of fcc structure	8	(12 x ¼) + 1 = 4	$(6 \times \frac{1}{2}) + (8 \times \frac{1}{8}) = 4$
occupied in spinel structure AB ₂ O ₄	A ²⁺	B ³⁺ , B ³⁺	4 x 0 ²⁻
occupied in inverse spinel B(AB)O ₄	B ³⁺	B ³⁺ , A ²⁺	4 x 0 ²⁻
magnetite	Fe ³⁺	Fe ³⁺ , Fe ²⁺	4 x O ²⁻
spins	↑ S = 5/2	\downarrow S = 5/2 , \downarrow S = 2	

Domains

 Ferromagnetic materials, block material, large magnetic moment

Magnetostatic Energy

Flux lines have a magnetostatic energy. This can be reduced if the material is divided into domains

Alligning ferromagnetically exchangecoupled spins in an antiparralel fashion is not the most stable arrangement. But the dominant term is the magnetostatic energy and creates the formation of domains.

Domain Boundaries

Domain boundaries vary in size normally a few hundred atoms. The manner in which spin orientation changes also varies

Bloch domain wall

Néel domain wall Magnetocrystalline

Energy

Dipoles in domains will tend to align one of the easy directions wrt the lattice

hard directions

Hysteresis

Applying a magnetic field in a closed domain structure, returning the field to non zero, and then increasing the field in the opposite direction.

	Consider applyin to a closed doma	g an <mark>increasing magnetic field</mark> in structure, returning the field	At maximum reverse field, the magnetisation now matches the forward field value in magnitude.	1	1	8	
	to zero and then opposite directio to easy direction	increasing the field in the on. Field is at a non-zero angle s.	Only on reversal of field direction does the magnetisation start decreasing significantly and then then reverse in direction.	1		ease in -	
	B = 0	Zero magnetic field (B). Domains closed. Each domain fully magnetised but no net magnetisation (zero magnetostatic energy).	On return to zero magnetic field, the sample still has significant net (remanent) magnetisation. It's a "magnet" !	B = 0		Incr	
crease in +B		As magnetic field is imposed and increases in magnitude, the domain(s) most closely aligned to the magnetic field increases in size at the expense of the other domains. Domain boundaries are moving into those dom ains that are less favourably aligned with respect to the field.	As field decreases, minor changes may occur, reducing the net magnetisation slightly but a full reversal of changes does not occur: there is a lag or <i>hysteresis</i> . (Reversing the changes in	1		ease in +B	
Ĕ	1	All domains aligned. Magnetic dipoles fully aligned but still along an easy axis.	magnetisation will need to be forced by reversing the field.)	I		Decr	
	1	Sufficiently high magnetic field may the (anisotropy, magnetocrystalline energy alignment (therefore increasing it).	en overcome local symmetry y) and rotate magnetisation into				

Extended Structures

Magnetic Field Scan | Paramagnet

Forward and reverse scan on paramagnetic molecules, trace is reversible. The remnant magnetisation is zero

Hysteresis Loop | Ferromagnets

- Below the curie temperature, the magnetic field scan of a ferrimagnet results in a lag of magnetisation (hysteresis)
- First ramp is paramagnetic behaviour

Saturation Magnetisation : Maximum magnetisation

Remanence Magnetisation : Amount of magnetisation left when B = 0

Coercive field : value of B in opposite direction to demagnetise the sample

Single Molecular Magnets & Single Chain Magnets

- For a paramagnet the spins are independent of one another and no molecule is locked into one of the + ½ or - ½ states (dynamic equilibrium)
- For ferromagnets and ferrimagnets below their critical temperature, the domains can be locked into one orientation, and thermal energy is insufficient to randomise them.
- The critical property is inertia, an energy barrier, the reorientation of a large magnetisation at a particular temperature.

Ferromagnetic Strategy

- Ferromagnetic coupling can only occur if coupling is absolutely orthogonal
- The oxalate ion can do this
- "complex as ligand" strategy to create polynuclear structures
- This results in a large ground state spin which can interact within the extended solid

xtended S truc tures

Single Chain Magnet

- Example of Ferrimagnetic strategy to produce large spins
- Accepting the inevitability of antiferromagnetic ligand mediated coupling but using alternating spins of very different magnitudes so as to maximise uncancelled net spin

Single Molecule Magnet

- Mn₁₂ can be the smallest molecular magnet
- Single chain magnets units with large spins, tetranuclear molecules and extended chains. Exhibit molecular magnet behaviour, such as hysteresis, often have very low critical temperature.
- Challenge is to raise this temperature
- This compound has the specific structure to show non-paramagnetic behav
- A molecule containing lots of Fe ions wont show hysteresis

S' and S" then couple antiferromagnetically

60

-60

Extended Structures

Electrical Conductivity

Conductivity

 $\sigma = n e \mu$ (number of current carrying species x electron charge x mobility

Ionic conduction can occur with ions, but we are only concerned with electrons and holes

Band Theory

Imagine an alkali metal (group 1 - conductors)

In an extended array of solid each s AO contributes to a MO. The number of AO you overlap must be the number of MO you get out. Hence a band rather than discrete energy levels

Same applies to p and d orbitals

Extra MO only fills the current set, it does not raise and lower the maximum and minimum levels

For alkali metal, there are N electrons and N orbitals

Each orbital takes 2 electrons Therefore only lowest N/2 orbitals are filled.

Highest filled orbital is the Fermi Level

Example of an s-band:

Band Theory

Band Theory

Direct evidence for band structure is obtained from photoelectron and x-ray emission spectroscopies which give bands very broad *cf*. molecular species.

Density of states in a metal

Density of states is greater at the extremes of a band for the one-dimensional case but for a three-dimensional system is greater at energies in the middle of the band. Graphite- sheet semi-metal.

Density of states in a semi-metal

Band Theory

Conductors and semi-conductors: contrasting temperature dependence.

Conductor: as temperature rises, electrical resistance rises. Electron described as travelling wave which is scattered by lattice vibrations disrupting the required uniformity of the orbital wavefunctions.

Semi-conductors: thermal increase in number of *charge carriers* more than offsets above effect:- increase in conductivity.

Generally, metal conductivity at room temperature is higher than semiconductor but it is not the magnitude that distinguishes the two.

One-dimensional solid

One-dimensional solid

 $K_2Pt(CN)_4 \cdot 3H_2O$ (=KCP) : white non-conductor with long (3.48 Å vs.metal 2.78 Å) Pt-Pt lengths. 1842: discovered under oxidising conditions appears bronze and conducts electricity. Contains substoichiometric Br⁻ or Cl⁻ i.e. Pt(II) \rightarrow Pt(2.3) and formula is $K_2Pt(CN)_4X_{0.3} \cdot 3H_2O$ with Pt-Pt at 2.88/2.87 Å.

Calculation shows a one-dimensional band structure is optimum at these stoichiometries and gives metallic properties.

(Whangbo & Hoffmann (1978) JACS **101** 6093) Square-planar Pt(II): band is formed from $5d_z^2$ orbitals, which are full until partial oxidation occurs.

 $\begin{array}{c} x^2 - y^2 - \\ z^2 + \\ xy + \\ zx, yz + \\ xy + \\ xy + \\ xy + \\ yz + \\ xy + \\ yz + \\ xy + \\ yz +$

First row transition metals with rock salt

structure

1st row TM M(II) oxides with rocksalt structure

TiO	VO	CrO	MnO	FeO	CoO	NiO
	V(H ₂ O) ₆ ²⁺ violet					Ni(H ₂ O) ₆ ²⁺ green
	VO black					NiO green
d ² partially occupy t _{2g}	2.		X			d ⁸ partially occupy eg
diffuse d-orbitals				¢		contracted d-orbitals
high electronic conductivity $(10^3 (\Omega \text{cm})^{-1})$	high electronic conductivity		defects/impurities? semi-conductor properties		insulator, no metallic properties	

Extended Structures