CHE-2C11: ORGANIC CHEMISTRY REVISION CHECKLIST

Section	Торіс	Complete?
1	Aromatic Compounds and Aromaticity Professor Cammidge	
2	Carbonyl Group Chemistry Professor Cammidge	
3	Stereochemistry & Mechanism Doctor Bew	
4	Pericyclic Reactions Doctor Richards	

Aromatic Compounds and Aromaticity – Professor Cammidge

Торіс	Subtopic	Before Revision	After Revision
Aromaticity	The structure of benzene using Valence Bond Approach		
	Molecular Orbital representation of Benzene		
	Frost-Musulin diagrams (polygon in a circle)		
	Huckel's Rule (4n + 2) Electron Rule		
	Criteria for a compound to be aromatic		
	Determining whether a molecule is		
	aromatic, anti-aromatic or non-aromatic		
	The exceptions of [10]-annulene due to		
	central protons		
	Using NMR as a test for aromaticity		
Aromatic lons	Acidity of cyclopentadiene		
	Acidity of cycloheptatriene and loss of		
	hydride to form the tropyllium ion		
Benzenoid /	Benzenoid Aromatic Compounds		
Heterocyclic	Heterocyclic Aromatic Compounds		
Aromatic	(Pyridine, Pyyrole, Furan, Thiophene)		
Compounds	Molecular Orbital representation of pyridine		
	Molecular Orbital representation of pyrrole,		
	furan and thiophene		
Electrophillic	Halogenation (Bromination of Benzene)		
aromatic	Nitration		
substitution	Sulfonation		
	Friedel-Crafts Acylation using an acyl (acid) chloride		
	Friedel-Crafts Acylation using an acid anhydride		
	The acylium ion		
	Friedel-Crafts Alkylation		
	Problems with Fridel-Crafts Alkylation		
	(prevention of double substitutions &		
	rearrangement of intermediate carbocation)		
	Other sources of carbocations (ie alkene or		
	alcohol in acid)		

CHE-2C11: ORGANIC CH	EMISTRY	REVISION CHECKLIST
Multiply	Ortho, meta and para prefixes	
Substituted	Activating substituents (Electron Donating)	
Aromatics	Deactivating substituents (Electron	
	Withdrawing)	
	The relative (de)activation of single	
	substituents through explanation of	
	resonance and inductive effects	
	Effect of Substituent on Orientation for	
	activating and deactivating groups	
Electophillic	Heterocyclic aromatic compounds that are	
aromatic	π-excessive	
substitution and	Electrophillic aromatic substitution at a	
multiple	heterocyclic aromatic compound	
substitution	Effect of Substituent on Orientation for	
reactions for	activating and deactivating groups on	
heterocyclic	heterocyclic aromatic compounds	
aromatic	Reaction of 5-membered heteroaromatics	
compounds	with electrophiles (pyrrole and acid, furan	
	and acid)	
	Vilsmeier-Haack Acylation (used to	
	introduce formyl group)	
	Mannich Reaction (used for substituent	
	CH ₂ Nu)	
Arene diazonium	Synthesis of arene diazonium salts	
salts	Sandmeyer reactions of Cu(I) salts	
	-CN	
	-Cl	
	-Br	
	-1	
	Scheimann reaction : HBF ₄ gives - F	
	Phenol formation: - OH	
	Hydride formation: - H – reduction of the	
	NH ₂ group (or its removal)	
Pyridine lone pair	Pyridine – lone pair on nitrogen reactivity –	
reactivity	(with H ⁺ , MeI, HOOH)	

Aromatic Compounds and Aromaticity – Professor Cammidge

Торіс	Fully Revised and Understood?
Aromaticity	
Aromatic lons	
Benzenoid / Heterocyclic Aromatic Compounds	
Electrophillic aromatic substitution	
Multiply Substituted Aromatics	
Electophillic aromatic substitution and multiple	
substitution reactions for heterocyclic aromatic	
compounds	
Arene diazonium salts	
Pyridine lone pair reactivity	
Aromatic Compounds and Aromaticity – Entire Topic	

Carbonyl Group Chemistry – Professor Cammidge

Торіс	Subtopic	Before Revision	After Revision
Basic	Reaction mechanism of a carbonyl as an		
Carbonyl	electrophile (ie with Nu ⁻)		
Chemistry	Reaction mechanism of a carbonyl as a nucelophile		
	Formation of enolates		
	Enolate alkylation with an alkyl halide		
	Acidity of the α – hydrogen atoms of carbonyl		
	compounds		
	Formation of enols : Keto-enol tautomerism		
	1,3-Dicarbonyl species		
	Carbonyl α – substitution reactions		
	Bases used for enolate formation		
	Chemical and Sterochemical Consequences of		
	Enolization		
Advanced	Racemization		
Carbonyl	Epimerization		
Chemistry	Reactions with Electrophiles: Halogenation		
	Use of Lewis acid as a catalyst		
	Unsymmetrical Ketones		
	Alkylation of Enolate lons		
	Enolates of Unsymmetrical Ketones		
	- Kinetic Enolate		
	- Thermodynamic Enolate		
	Kinetic Enolates		
	Thermodynamic Enolates		
	Alkylation of Esters and Nitriles		

CHE-2C11: ORGAN	IC CHEMISTRY	REVISION CHECKLIST
Reaction	1,3 – Dicarbonyl compounds - Alkylation	
Mechanisms	1,3 – Dicarbonyl compounds - Dianions	
	β – Ketoesters - Decarboxylation	
	The 'Malonate and Acetoacetate Syntheses'	
	Malonate Synthesis	
	The Aldol Reaction	
	Dehydration of Aldol Products: Synthesis of Enones	
	Mechanism of Aldol Dehydration	
	Intramolecular Aldol Reactions	
	The Claisen Condensation	
	Intramolecular Claisen Condensation – The Dieckmann Cyclization	
	Knoevenagel Condensation	
	The Michael Reaction	
	Examples of typical Michael donors and acceptors	
	The Robinson Annelation	
	Condensation with Amine Derivatives (Imine formation)	
	Enamine Reactivity	
	The Wittig Reaction	
Planning a Synthesis of a	Understanding of Functional Group Interconversions	
Target Molecule	Understanding of Carbon – Carbon bond forming reactions	
	Recognise functional groups in the target molecule	
	Be aware of how you could make these functional groups and how they react	
	Recognise potential carbon – carbon bond forming steps	
	Idea of Synthons and Reagents	
	Synthetic Equivalents to Common Synthons	

Carbonyl Group Chemistry – Professor Cammidge

Торіс	Fully Revised and Understood?
Basic Carbonyl Chemistry	
Advanced Carbonyl Chemistry	
Reaction Mechanisms	
Planning a Synthesis of a Target Molecule	
Carbonyl Group Chemistry – Entire Topic	

Stereochemistry & Mechanism – Doctor Bew

Торіс	Subtopic	Before Revision	After Revision
Beginning	Conformations and Configurations		
Concepts	Sawhorse and Newman Projections of ethane		
	Staggered Conformations of n-Butane (eclipsed,		
	staggered, synperiplanar, synclinal or gauche,		
	anticlinal, antiperiplanar) and relative energy level		
	diagram for central bond rotation		
	Explanation for why energy barriers occur –		
<u>Ouelshavens</u>	torsional/Pitzer strain		
Cyclohexane	Structure of cyclohexane – chair and boat		
	Can you draw a cyclohexane ring properly?		
	Side on view of cyclohexane and a newman projection		
	Why is boat conformation of higher energy?		
	Flagstaff C-H bonds etc		
	Equatorial and Axial interactions, they have		
	different environments.		
Ring Inversion	Process of the ring flip (chair – half chair – twist		
J	boat – half chair – chair)		
	Relative energies with the chair, half chair and		
	twist boat and their structures		
Smaller	Cyclopropane		
cycloalkyl rings	Cyclobutane - puckered		
	Cyclopentante – open envolope		
	Determination of ring strain from heat of		
	combustion relative to straight chain alkanes		
	Stablility of Ring Systems – 5 membered has		
	minimum ring strain		
	Consideration of		
	(1) Torsion		
	(2) Sterics		
	(3) Angles		
Cycloalkenes	Cyclopropene		
	Cyclobutene		
	Cyclopentene strain is the same as Cyclopentane		
	Cyclohexene – adopts two structures (cis/trans)		
	and exists as half chair form		
	Cyclohexadienes (1,4 cyclohexadiene and 1,3		
	cyclohexadiene)		

Monosubstituted cyclohexaneMethylcyclohexane and and due to anti-periplana (prefers equatorial positi Conformational Free End substituentsTert-butyl lockCis 1,4 di(t-butyl)cyclohe pseudoequatorial	r carbon structure on) ergy of common xane forms rism, configuration and
(prefers equatorial positi Conformational Free En- substituents Tert-butyl lock Cis 1,4 di(t-butyl)cyclohe	on) ergy of common xane forms rism, configuration and
Conformational Free End substituents Tert-butyl lock Cis 1,4 di(t-butyl)cyclohe	xane forms
substituents Tert-butyl lock Cis 1,4 di(t-butyl)cyclohe	xane forms
Tert-butyl lock Cis 1,4 di(t-butyl)cyclohe	rism, configuration and
Cis 1,4 di(t-butyl)cyclohe	rism, configuration and
	rism, configuration and
pequideoquatorial	
Disubstituted Prediction of steroisome	
Cyclohexanes conformation of disubstit	
Heteroatoms in Atomic radii changes rin	
or on rings Geometric effects on sul	ostituent preferences
Syn-axial interactions wi	h lone pairs (1,3 diaxial
interactions)	
Anomeric Effect Preferation of glucose an	
	ent at an anomeric centre
prefers axial due to over	
must be anti-periplanar t	
Fundamentals of Curly arrows are very im	
	symmetrical ketone) then
Chemistry enantiomers formed	size of C=O substituents
to 109'.	angles change from 120
Simple Addition Reaction	ne te Carbonyl Groupe
Attack at the Carbonyl G	
nucleophile can attack fr	
Crams Rule!	
Neighbouring Examples of anchimeric	assistance (NGP)
Group Results in a rate acceler	
Participation Payne rearrangement	
Wagner-Meerwein Rear	angements
Pinacol Rearrangements	
E2 elimination reactions	
systems	
Sterochemistry of E2 rea	ctions on cyclohexane
rings	·

Stereochemistry & Mechanism – Doctor Bew

Торіс	Fully Revised and Understood?
Beginning Concepts	
Cyclohexane	
Ring Inversion	
Smaller cycloalkyl rings	
Cycloalkenes	
Monosubstituted cyclohexane	
Disubstituted Cyclohexanes	
Heteroatoms in or on rings	
Fundamentals of Carbonyl Chemistry	
Neighbouring Group Participation	
Stereochemistry & Mechanism – Entire Topic	

Pericyclic Reactions – Doctor Richards

Торіс	Subtopic	Before Revision	After Revision
Interpretation of	The basics of ¹ H NMR Spectroscopy		
Spectra	Chemical Shift and ppm		
	Integration		
	Magnetic Equivalence		
	Coupling		
	Magnitude of three-bond coupling constants (J)		
	Reporting ¹ H NMR date		
	¹³ C NMR Spectroscopy		
	IR Spectroscopy		
	Microanalysis (combustion analysis)		
	Mass Spectrometry		
	High Resolution Mass Spectrometry		
	Specific Rotation		
Pericyclic	Definition of pericyclic reactions in terms of		
Reactions	concerted and rearrangement		
	Types of pericyclic reactions		
	- Cycloaddition		
	 Electrocyclic reactions 		
	 Sigmatropic rearrangement 		
Cycloadditions	Diels-Alder reaction		
	Examples of Diels-Alder reactions		
	Orientation of reactants (diene and dienophile)		
	Diene conformation		
	Sterochemistry		
	Hetero-Diels-Alder Reactions		
	Other cycloadditions ([6+4],[8+2])		
	Thermal cycloadditions in terms of aromaticity		
	Photochemical [2 + 2] Cycloaddition		
	Thermal [2 + 2] Cycloaddition		
Sigmatropic	Claisen Rearrangement		
Rearrangements	Nomenclature for sigmatropic rearrangements		
	Aliphatic Claisen rearrangement		
	Cope rearrangement		
	[2,3]-sigmatropic rearrangements		
	[1,5]-signmatropic Hydrogen Shifts		
Electrocyclic	Nazarov Cyclisation		
Reactions			

CHE-2C11: ORGANIC	CHEMISTRY	REVISION CHECKLIST
Ionic (Cation)	Carbocation Rearrangements	
Rearrangements	Wagner-Meerwein Rearrangements	
	The Pinacol Rearrangement	
	Choice of Migrating Group	
	The Dienone-Phenol Rearragement	
	The Beckmann Rearrangement	
Ionic (Anion)	Benzillic Acid Rearrangement	
Rearrangements	Favorskii Rearrangement	
	Baeyer – Villiger Reaction	

Pericyclic Reactions – Doctor Richards

Торіс	Fully Revised and Understood?
Interpretation of Spectra	
Pericyclic Reactions	
Cycloadditions	
Sigmatropic Rearrangements	
Electrocyclic Reactions	
Ionic (Cation) Rearrangements	
Ionic (Anion) Rearrangements	
Pericyclic Reactions – Entire Topic	